-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathArduino_Quadcopter_MPU6050.ino
538 lines (442 loc) · 24.7 KB
/
Arduino_Quadcopter_MPU6050.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#include <Wire.h> //Include the Wire.h library so we can communicate with the gyro.
/////////////////////////////////
//PID gain and limit settings
/////////////////////////////////
float pid_p_gain_roll = 0.95; //Gain setting for the roll P-controller
float pid_i_gain_roll = 0.03; //Gain setting for the roll I-controller
float pid_d_gain_roll = 17.0; //Gain setting for the roll D-controller
int pid_max_roll = 400; //Maximum output of the PID-controller (+/-)
float pid_p_gain_pitch = pid_p_gain_roll; //Gain setting for the pitch P-controller
float pid_i_gain_pitch = pid_i_gain_roll; //Gain setting for the pitch I-controller
float pid_d_gain_pitch = pid_d_gain_roll; //Gain setting for the pitch D-controller
int pid_max_pitch = pid_max_roll; //Maximum output of the PID-controller (+/-)
float pid_p_gain_yaw = 3.0; //Gain setting for the pitch P-controller
float pid_i_gain_yaw = 0.02; //Gain setting for the pitch I-controller
float pid_d_gain_yaw = 0.0; //Gain setting for the pitch D-controller
int pid_max_yaw = 400; //Maximum output of the PID-controller (+/-)
/////////////////////////////////
//Declaring Variables
/////////////////////////////////
byte last_channel_1, last_channel_2, last_channel_3, last_channel_4;
int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3, receiver_input_channel_4;
int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4, loop_counter;
int esc_1, esc_2, esc_3, esc_4;
int throttle, battery_voltage;
unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer, esc_loop_timer;
unsigned long timer_1, timer_2, timer_3, timer_4, current_time;
int cal_int, start;
unsigned long loop_timer;
double gyro_pitch, gyro_roll, gyro_yaw;
double gyro_roll_cal, gyro_pitch_cal, gyro_yaw_cal;
byte highByte, lowByte;
float pid_error_temp;
float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last_roll_d_error;
float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch, pid_last_pitch_d_error;
float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw, pid_last_yaw_d_error;
float x_gyro = 0;
float y_gyro = 0;
float z_gyro = 0;
float gyro[3];
float gyroScaleFactor = radians(1000.0 / 32768.0);
//float gyroScaleFactor = (0.0174532 / 16.4);
uint16_t sensors_detected = 0x00;
uint8_t gyroSamples = 0;
int16_t gyroRaw[3];
float gyroSum[3];
int16_t gyro_offset[3];
float gyro_x_cal=0.0;
float gyro_y_cal=0.0;
float gyro_z_cal=0.0;
/////////////////////////////////
//Defining Variables
/////////////////////////////////
#define XAXIS 0
#define YAXIS 1
#define ZAXIS 2
#define MPU6050_ADDRESS 0x68
#define MPUREG_WHOAMI 0x75
#define MPUREG_SMPLRT_DIV 0x19
#define MPUREG_CONFIG 0x1A
#define MPUREG_GYRO_CONFIG 0x1B
#define MPUREG_ACCEL_CONFIG 0x1C
#define MPUREG_FIFO_EN 0x23
#define MPUREG_INT_PIN_CFG 0x37
#define MPUREG_INT_ENABLE 0x38
#define MPUREG_INT_STATUS 0x3A
#define MPUREG_ACCEL_XOUT_H 0x3B
#define MPUREG_ACCEL_XOUT_L 0x3C
#define MPUREG_ACCEL_YOUT_H 0x3D
#define MPUREG_ACCEL_YOUT_L 0x3E
#define MPUREG_ACCEL_ZOUT_H 0x3F
#define MPUREG_ACCEL_ZOUT_L 0x40
#define MPUREG_TEMP_OUT_H 0x41
#define MPUREG_TEMP_OUT_L 0x42
#define MPUREG_GYRO_XOUT_H 0x43
#define MPUREG_GYRO_XOUT_L 0x44
#define MPUREG_GYRO_YOUT_H 0x45
#define MPUREG_GYRO_YOUT_L 0x46
#define MPUREG_GYRO_ZOUT_H 0x47
#define MPUREG_GYRO_ZOUT_L 0x48
#define MPUREG_USER_CTRL 0x6A
#define MPUREG_PWR_MGMT_1 0x6B
#define MPUREG_PWR_MGMT_2 0x6C
#define MPUREG_FIFO_COUNTH 0x72
#define MPUREG_FIFO_COUNTL 0x73
#define MPUREG_FIFO_R_W 0x74
// Configuration bits
#define BIT_SLEEP 0x40
#define BIT_H_RESET 0x80
#define BITS_CLKSEL 0x07
#define MPU_CLK_SEL_PLLGYROX 0x01
#define MPU_CLK_SEL_PLLGYROZ 0x03
#define MPU_EXT_SYNC_GYROX 0x02
#define BITS_FS_250DPS 0x00
#define BITS_FS_500DPS 0x08
#define BITS_FS_1000DPS 0x10
#define BITS_FS_2000DPS 0x18
#define BITS_FS_MASK 0x18
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
#define BITS_DLPF_CFG_188HZ 0x01
#define BITS_DLPF_CFG_98HZ 0x02
#define BITS_DLPF_CFG_42HZ 0x03
#define BITS_DLPF_CFG_20HZ 0x04
#define BITS_DLPF_CFG_10HZ 0x05
#define BITS_DLPF_CFG_5HZ 0x06
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07
#define BIT_INT_ANYRD_2CLEAR 0x10
#define BIT_RAW_RDY_EN 0x01
#define BIT_I2C_IF_DIS 0x10
#define BIT_INT_STATUS_DATA 0x01
#define pi 3.14159
#define RAD_TO_DEG 57.295779513082320876798154814105
/////////////////////////////////
//Setup routine
/////////////////////////////////
void setup(){
DDRD |= B11110000; //Configure digital port 4, 5, 6 and 7 as output.
DDRB |= B00110000; //Configure digital port 12 and 13 as output.
//Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs.
Wire.begin();
//Use the led on the Arduino for startup indication
digitalWrite(13,HIGH); //Turn on the warning led.
delay(3000); //Wait 2 second befor continuing.
Serial.begin(115200);
// I2C bus hardware specific settings
#if defined(__MK20DX128__)
I2C0_F = 0x00; // 2.4 MHz (prescaler 20)
I2C0_FLT = 4;
#endif
#if defined(__AVR__)
TWBR = 12; // 400 KHz (maximum supported frequency)
#endif
mpu6050_initialize();
delay(20);
//Let's take multiple samples so we can determine the average gyro offset
Serial.print("Starting calibration..."); //Print message
for (int cal_int = 0 ; cal_int <= 100 ; cal_int++){
gyro_signalen();
gyro_roll = (gyroRaw[XAXIS]*gyroScaleFactor)*RAD_TO_DEG;
gyro_pitch = (gyroRaw[YAXIS]*gyroScaleFactor)*RAD_TO_DEG;
gyro_yaw = (gyroRaw[ZAXIS]*gyroScaleFactor)*RAD_TO_DEG;
gyro_x_cal += gyro_roll;
gyro_y_cal += gyro_pitch;
gyro_z_cal += gyro_yaw;
if(cal_int%10 == 0)Serial.print("."); //Print a dot every 100 readings
digitalWrite(13, LOW);
delay(20);
digitalWrite(13, HIGH);
delay(20);
}
//Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset
Serial.println(" done!"); //2000 measures are done!
gyro_x_cal = gyro_x_cal/100.0;
gyro_y_cal = gyro_y_cal/100.0;
gyro_z_cal = gyro_z_cal/100.0;
Serial.print("gyro_x_cal:");Serial.print(gyro_x_cal);Serial.print("\t");
Serial.print("gyro_y_cal:");Serial.print(gyro_y_cal);Serial.print("\t");
Serial.print("gyro_z_cal:");Serial.print(gyro_z_cal);Serial.print("\t");
delay(200);
PCICR |= (1 << PCIE0); //Set PCIE0 to enable PCMSK0 scan.
PCMSK0 |= (1 << PCINT0); //Set PCINT0 (digital input 8) to trigger an interrupt on state change.
PCMSK0 |= (1 << PCINT1); //Set PCINT1 (digital input 9)to trigger an interrupt on state change.
PCMSK0 |= (1 << PCINT2); //Set PCINT2 (digital input 10)to trigger an interrupt on state change.
PCMSK0 |= (1 << PCINT3); //Set PCINT3 (digital input 11)to trigger an interrupt on state change.
//Wait until the receiver is active and the throtle is set to the lower position.
while(receiver_input_channel_3 < 990 || receiver_input_channel_3 > 1020 || receiver_input_channel_4 < 1400){
start ++; //While waiting increment start whith every loop.
//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while waiting for the receiver inputs.
PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delay(3); //Wait 3 milliseconds before the next loop.
if(start == 125){ //Every 125 loops (500ms).
digitalWrite(13, !digitalRead(13)); //Change the led status.
start = 0; //Start again at 0.
}
}
start = 0; //Set start back to 0.
//Load the battery voltage to the battery_voltage variable.
//65 is the voltage compensation for the diode.
//12.6V equals ~5V @ Analog 0.
//12.6V equals 1023 analogRead(0).
//1260 / 1023 = 1.2317.
//The variable battery_voltage holds 1050 if the battery voltage is 10.5V.
battery_voltage = (analogRead(0) + 65) * 1.2317;
//When everything is done, turn off the led.
digitalWrite(13,LOW); //Turn off the warning led.
}
/////////////////////////////////
//Main program loop
/////////////////////////////////
void loop(){
//Let's get the current gyro data and scale it to degrees per second for the pid calculations.
gyro_signalen();
gyro_roll = (gyroRaw[XAXIS]*gyroScaleFactor)*RAD_TO_DEG-gyro_x_cal;
gyro_pitch = ((gyroRaw[YAXIS]*gyroScaleFactor)*RAD_TO_DEG-gyro_y_cal)*-1;
gyro_yaw = ((gyroRaw[ZAXIS]*gyroScaleFactor)*RAD_TO_DEG-gyro_z_cal)*-1;
gyro_roll_input = (gyro_roll_input * 0.8) + ((gyro_roll) * 0.2); //Gyro pid input is deg/sec.
gyro_pitch_input = (gyro_pitch_input * 0.8) + ((gyro_pitch) * 0.2); //Gyro pid input is deg/sec.
gyro_yaw_input = (gyro_yaw_input * 0.8) + ((gyro_yaw) * 0.2); //Gyro pid input is deg/sec.
// Serial.print(gyro_roll_input);Serial.print("\t");
// Serial.print(gyro_pitch_input);Serial.print("\t");
// Serial.print(gyro_yaw_input);Serial.print("\t");
// Serial.print("\n");
//For starting the motors: throttle low and yaw left (step 1).
if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1150)start = 1;
//When yaw stick is back in the center position start the motors (step 2).
if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450){
start = 2;
//Reset the pid controllers for a bumpless start.
pid_i_mem_roll = 0;
pid_last_roll_d_error = 0;
pid_i_mem_pitch = 0;
pid_last_pitch_d_error = 0;
pid_i_mem_yaw = 0;
pid_last_yaw_d_error = 0;
}
//Stopping the motors: throttle low and yaw right.
if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1750)start = 0;
//The PID set point in degrees per second is determined by the roll receiver input.
//In the case of deviding by 3 the max roll rate is aprox 164 degrees per second ( (500-8)/3 = 164d/s ).
pid_roll_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver_input_channel_1 > 1510)pid_roll_setpoint = (receiver_input_channel_1 - 1510)/4.0;
else if(receiver_input_channel_1 < 1490)pid_roll_setpoint = (receiver_input_channel_1 - 1490)/4.0;
//The PID set point in degrees per second is determined by the pitch receiver input.
//In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ( (500-8)/3 = 164d/s ).
pid_pitch_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver_input_channel_2 > 1510)pid_pitch_setpoint = (receiver_input_channel_2 - 1510)/4.0;
else if(receiver_input_channel_2 < 1490)pid_pitch_setpoint = (receiver_input_channel_2 - 1490)/4.0;
//The PID set point in degrees per second is determined by the yaw receiver input.
//In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ( (500-8)/3 = 164d/s ).
pid_yaw_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver_input_channel_3 > 1050){ //Do not yaw when turning off the motors.
if(receiver_input_channel_4 > 1510)pid_yaw_setpoint = (receiver_input_channel_4 - 1510)/4.0;
else if(receiver_input_channel_4 < 1490)pid_yaw_setpoint = (receiver_input_channel_4 - 1490)/4.0;
}
//PID inputs are known. So we can calculate the pid output.
calculate_pid();
//The battery voltage is needed for compensation.
//A complementary filter is used to reduce noise.
//0.09853 = 0.08 * 1.2317.
battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853;
//Turn on the led if battery voltage is to low.
if(battery_voltage < 1050 && battery_voltage > 600)digitalWrite(13, HIGH);
throttle = receiver_input_channel_3; //We need the throttle signal as a base signal.
if (start == 2){ //The motors are started.
if (throttle > 1800) throttle = 1800; //We need some room to keep full control at full throttle.
esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw; //Calculate the pulse for esc 1 (front-right - CCW)
esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw; //Calculate the pulse for esc 2 (rear-right - CW)
esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw; //Calculate the pulse for esc 3 (rear-left - CCW)
esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw; //Calculate the pulse for esc 4 (front-left - CW)
if (battery_voltage < 1240 && battery_voltage > 800){ //Is the battery connected?
esc_1 += esc_1 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-1 pulse for voltage drop.
esc_2 += esc_2 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-2 pulse for voltage drop.
esc_3 += esc_3 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-3 pulse for voltage drop.
esc_4 += esc_4 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-4 pulse for voltage drop.
}
if (esc_1 < 1200) esc_1 = 1200; //Keep the motors running.
if (esc_2 < 1200) esc_2 = 1200; //Keep the motors running.
if (esc_3 < 1200) esc_3 = 1200; //Keep the motors running.
if (esc_4 < 1200) esc_4 = 1200; //Keep the motors running.
if(esc_1 > 2000)esc_1 = 2000; //Limit the esc-1 pulse to 2000us.
if(esc_2 > 2000)esc_2 = 2000; //Limit the esc-2 pulse to 2000us.
if(esc_3 > 2000)esc_3 = 2000; //Limit the esc-3 pulse to 2000us.
if(esc_4 > 2000)esc_4 = 2000; //Limit the esc-4 pulse to 2000us.
}
else{
esc_1 = 1000; //If start is not 2 keep a 1000us pulse for ess-1.
esc_2 = 1000; //If start is not 2 keep a 1000us pulse for ess-2.
esc_3 = 1000; //If start is not 2 keep a 1000us pulse for ess-3.
esc_4 = 1000; //If start is not 2 keep a 1000us pulse for ess-4.
}
//All the information for controlling the motor's is available.
//The refresh rate is 250Hz. That means the esc's need there pulse every 4ms.
while(micros() - loop_timer < 4000); //We wait until 4000us are passed.
loop_timer = micros(); //Set the timer for the next loop.
PORTD |= B11110000; //Set digital outputs 4,5,6 and 7 high.
timer_channel_1 = esc_1 + loop_timer; //Calculate the time of the faling edge of the esc-1 pulse.
timer_channel_2 = esc_2 + loop_timer; //Calculate the time of the faling edge of the esc-2 pulse.
timer_channel_3 = esc_3 + loop_timer; //Calculate the time of the faling edge of the esc-3 pulse.
timer_channel_4 = esc_4 + loop_timer; //Calculate the time of the faling edge of the esc-4 pulse.
while(PORTD >= 16){ //Stay in this loop until output 4,5,6 and 7 are low.
esc_loop_timer = micros(); //Read the current time.
if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111; //Set digital output 4 to low if the time is expired.
if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111; //Set digital output 5 to low if the time is expired.
if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111; //Set digital output 6 to low if the time is expired.
if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111; //Set digital output 7 to low if the time is expired.
}
}
/////////////////////////////////
//This routine is called every time input 8, 9, 10 or 11 changed state
/////////////////////////////////
ISR(PCINT0_vect){
current_time = micros();
//Channel 1=========================================
if(PINB & B00000001){ //Is input 8 high?
if(last_channel_1 == 0){ //Input 8 changed from 0 to 1
last_channel_1 = 1; //Remember current input state
timer_1 = current_time; //Set timer_1 to current_time
}
}
else if(last_channel_1 == 1){ //Input 8 is not high and changed from 1 to 0
last_channel_1 = 0; //Remember current input state
receiver_input_channel_1 = current_time - timer_1; //Channel 1 is current_time - timer_1
}
//Channel 2=========================================
if(PINB & B00000010 ){ //Is input 9 high?
if(last_channel_2 == 0){ //Input 9 changed from 0 to 1
last_channel_2 = 1; //Remember current input state
timer_2 = current_time; //Set timer_2 to current_time
}
}
else if(last_channel_2 == 1){ //Input 9 is not high and changed from 1 to 0
last_channel_2 = 0; //Remember current input state
receiver_input_channel_2 = current_time - timer_2; //Channel 2 is current_time - timer_2
}
//Channel 3=========================================
if(PINB & B00000100 ){ //Is input 10 high?
if(last_channel_3 == 0){ //Input 10 changed from 0 to 1
last_channel_3 = 1; //Remember current input state
timer_3 = current_time; //Set timer_3 to current_time
}
}
else if(last_channel_3 == 1){ //Input 10 is not high and changed from 1 to 0
last_channel_3 = 0; //Remember current input state
receiver_input_channel_3 = current_time - timer_3; //Channel 3 is current_time - timer_3
}
//Channel 4=========================================
if(PINB & B00001000 ){ //Is input 11 high?
if(last_channel_4 == 0){ //Input 11 changed from 0 to 1
last_channel_4 = 1; //Remember current input state
timer_4 = current_time; //Set timer_4 to current_time
}
}
else if(last_channel_4 == 1){ //Input 11 is not high and changed from 1 to 0
last_channel_4 = 0; //Remember current input state
receiver_input_channel_4 = current_time - timer_4; //Channel 4 is current_time - timer_4
}
}
/////////////////////////////////
//Subroutine for reading the gyro
/////////////////////////////////
void gyro_signalen()
{
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_GYRO_XOUT_H);
Wire.endTransmission();
Wire.requestFrom(MPU6050_ADDRESS, 6);
while(Wire.available() < 6); //Wait until the 6 bytes are received
gyroRaw[XAXIS] = ((Wire.read() << 8) | Wire.read());
gyroRaw[YAXIS] = ((Wire.read() << 8) | Wire.read());
gyroRaw[ZAXIS] = ((Wire.read() << 8) | Wire.read());
}
/////////////////////////////////
//Subroutine for calculating pid outputs
/////////////////////////////////
void calculate_pid(){
//Roll calculations
pid_error_temp = gyro_roll_input - pid_roll_setpoint;
pid_i_mem_roll += pid_i_gain_roll * pid_error_temp;
if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll;
else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1;
pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll * (pid_error_temp - pid_last_roll_d_error);
if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll;
else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1;
pid_last_roll_d_error = pid_error_temp;
//Pitch calculations
pid_error_temp = gyro_pitch_input - pid_pitch_setpoint;
pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp;
if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch;
else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1;
pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch * (pid_error_temp - pid_last_pitch_d_error);
if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch;
else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1;
pid_last_pitch_d_error = pid_error_temp;
//Yaw calculations
pid_error_temp = gyro_yaw_input - pid_yaw_setpoint;
pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp;
if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw;
else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1;
pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw * (pid_error_temp - pid_last_yaw_d_error);
if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw;
else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1;
pid_last_yaw_d_error = pid_error_temp;
}
/////////////////////////////////
//Gyro Initilization
/////////////////////////////////
void mpu6050_initialize()
{
// Chip reset
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_PWR_MGMT_1);
Wire.write(BIT_H_RESET);
Wire.endTransmission();
// Startup delay
delay(100);
// Check if sensor is alive
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_WHOAMI);
Wire.endTransmission();
Wire.requestFrom(MPU6050_ADDRESS, 1);
uint8_t register_value = Wire.read();
// if (register_value == 0x68) {
// sensors_detected |= GYROSCOPE_DETECTED;
// sensors_detected |= ACCELEROMETER_DETECTED;
// } else {
// return;
// }
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_INT_PIN_CFG);
Wire.write(0x02);
Wire.endTransmission();
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_PWR_MGMT_1);
Wire.write(MPU_CLK_SEL_PLLGYROZ);
Wire.endTransmission();
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_PWR_MGMT_2);
Wire.write(0);
Wire.endTransmission();
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_SMPLRT_DIV);
Wire.write(0x00);
Wire.endTransmission();
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_CONFIG);
Wire.write(BITS_DLPF_CFG_42HZ);
Wire.endTransmission();
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_GYRO_CONFIG);
Wire.write(BITS_FS_1000DPS);
Wire.endTransmission();
Wire.beginTransmission(MPU6050_ADDRESS);
Wire.write(MPUREG_ACCEL_CONFIG);
Wire.write(0x08);
Wire.endTransmission();
delay(1500);
}