Predict tree plant functional type, genus, and species from terrestrial lidar scans tree features using hyper-param tuned CatBoost trained on FastFuel dataset
- Download the data and form the directory structure shown as follows.
sprint_4/
├── FastFuel
│ ├── FF_treelist_all.csv
│ ├── blk_plot_identification.csv
│ └── fftl_column_description.csv
├── SPCD_from_points.ipynb
├── TLS_catboost.ipynb
├── fia-database-california
│ ├── CA_PLOT.csv
│ └── CA_TREE.csv
├── field_data
│ ├── 01_plot_identification.csv
│ └── 03_tree.csv
├── requirements.txt
├── species_reference
│ ├── FIATreeSpeciesCode_pft.csv
│ └── REF_SPECIES.csv
├── terrestrial-lidar-scans-tls-and-derived-tree-lists-for-field-sampled-plots-for-uc-climate-actio
│ ├── TLS_treelist.csv
│ ├── blk_plot_identification.csv
│ ├── intellimon_chm.zip
│ ├── intellimon_column_descriptions.csv
│ └── tls_files_download_paths.txt
└── tls_catboost_v3.cbm-
Create environment & install:
pip install -r requirements.txt
-
Run the notebook
Please Note:
-
The notebook currently loads trained model weights.
-
To replicate the training process, set
is_infer = Falsein theCFGclass. -
To perform hyperparameter tuning, set
n_hyper_trial > 0. -
Additional details and explanations are included as comments within the notebook.
-
Special thanks to the organizers for organizing the event, providing the dataset and framework for this task.