Skip to content

Code for creating and querying an Avro encoded repository of the UC Berkeley Enron email archive

Notifications You must be signed in to change notification settings

rjurney/enron-avro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Using Pig, Hadoop and Avro to Mine the Enron Emails

Code for creating and querying an Avro encoded repository of the UC Berkeley Enron email archive.

The Berkeley Enron Emails

Introduction

In this project we will convert this MySQL database of Enron emails into Avro format for analysis on Hadoop with Pig.

Email is a rich source of information for analysis by many means. During the investigation of the Enron scandal of 2001, 517,431 messages from 114 inboxes of key Enron executives were collected. These emails were published and have become a common dataset for academics to analyze document collections and social networks. Andrew Fiore and Jeff Heer at UC Berkeley have cleaned this email set and provided it as a MySQL archive.

We hope that this dataset can become a sort of common set for examples and questions, as anonymizing one's own data in public forums can make asking questions and getting authoritative answers tricky.

More information about the Enron Emails is available:

Setting up the Enron Database

Installing MySQL

MySQL is a simple but powerful open-source database. MySQL 5.5 is available here, and easy setup instructions are available.

Download and Load the Enron Emails

A MySQL 5.5 compatible version of the emails is available here.

Download the database archive, unpack it, create the enron database and then load the archive into it.

[bash]$ tar -xvzf enron.mysql.5.5.20.sql.gz
[bash]$ mysql -u root -e 'create database enron'
[bash]$ mysql -u root < enron.mysql.5.5.20.sql

This will take some time, as the data is loaded into many tables with relationships and indexes. This is a good example of how structured, relational data works. Data processing in relational databases is front-loaded to optimize query performance later. With Hadoop and Pig, semi-structured or un-structured data is processed in parallel on many machines via MapReduce. We might say that concurrency on many networked machines replaces indexes on one machine. This allows us to manipulate many kinds of data in an ad hoc fashion without having to rigorously structure it before processing.

Inspect and Query the Emails

[bash]$ mysql -u root enron

mysql> show tables;

+-----------------+
| Tables_in_enron |
+-----------------+
| bodies          |
| categories      |
| catgroups       |
| edgemap         |
| edges           |
| headers         |
| mailgraph       |
| messagecats     |
| messages        |
| people          |
| recipients      |
+-----------------+
11 rows in set (0.00 sec)

As we can see, this data is highly structured.

mysql> select * from messages limit 1;
+-----------+----------------------------------------------+---------------------+-----------+----------+--------------------+
| messageid | smtpid                                       | messagedt           | messagetz | senderid | subject            |
+-----------+----------------------------------------------+---------------------+-----------+----------+--------------------+
|         1 | <2614099.1075839927264.JavaMail.evans@thyme> | 2001-10-31 05:23:56 | -0800 PST |        1 | Path 30 mitigation |
+-----------+----------------------------------------------+---------------------+-----------+----------+--------------------+
1 row in set (0.01 sec)

Querying a single email to return it as a document we might see in our inbox is complex. And yet this is precisely the format that is most convenient for analysis. This is the limitation of highly structured, relational data. Lets select a single email as we might view it in raw format.

mysql> select m.smtpid as id, 
       m.messagedt as date, 
       s.email as sender,
       (select group_concat(CONCAT(r.reciptype, ':', p.email) SEPARATOR ', ') from recipients r join people p ON r.personid=p.personid where r.messageid = 511) as to_cc_bcc,
       m.subject as subject, 
       SUBSTR(b.body, 1, 200) as body
            from messages m 
            join people s
                on m.senderid=s.personid
            join bodies b 
                on m.messageid=b.messageid 
                    where m.messageid=511;
                    
+-----------------------------------------------+---------------------+----------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------+--------------------------------------------------------------------------------------------------------------+
| id                                            | date                | sender               | to_cc_bcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | subject                             | body                                                                                                         |
+-----------------------------------------------+---------------------+----------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------+--------------------------------------------------------------------------------------------------------------+
| <25772535.1075839951307.JavaMail.evans@thyme> | 2002-02-02 12:56:33 | [email protected] | to:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] cc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] bcc:[email protected] | Schedule Crawler: HourAhead Failure | 

Start Date: 2/2/02; HourAhead hour: 11;  HourAhead schedule download failed. Manual intervention required. |
+-----------------------------------------------+---------------------+----------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------+--------------------------------------------------------------------------------------------------------------+
1 row in set (0.04 sec)

This is painful, to say the least. In contrast, with our data in Avro encoded document format, we'll be able to more easily access these emails to analyze both their structured and unstructured components with whatever tools we prefer.

Dumping MySQL to Tab-Delimited

Now that we're comfortable with our data, lets query it for export.

  1. Get the emails and their senders:

    mysql> select m.smtpid as message_id, m.messagedt as date, s.email as from_address, s.name as from_name, m.subject as subject, b.body as body from messages m join people s on m.senderid=s.personid join bodies b on m.messageid=b.messageid limit 10;

    +----------------------+---------------------+----------------------+----------------------+----------------------+----------------------+ | message_id | date | from_address | from_name | subject | body | +----------------------+---------------------+----------------------+----------------------+----------------------+----------------------+ | <2614099.10758399272 | 2001-10-31 05:23:56 | marketopshourahead@c | CAISO Market Operati | Path 30 mitigation | System Notification: | | <31442247.1075839927 | 2001-10-31 04:04:37 | marketopsrealtimebee | CAISO Market Operati | Path 15 | Internal path flows | | <1111763.10758399275 | 2001-10-31 03:33:18 | marketopsrealtimebee | CAISO Market Operati | Path 15 | Path 15 S-N flows ar | | <29147324.1075839927 | 2001-10-31 01:51:22 | marketopshourahead@c | CAISO Market Operati | Unscheduled Flow Pro | Market Message: At 2 | | <17933220.1075839927 | 2001-10-30 23:07:04 | marketopsrealtimebee | CAISO Market Operati | Expost pricing on OA | Beginning HE20, the | | <17725708.1075839927 | 2001-10-30 22:43:37 | marketopsrealtimebee | CAISO Market Operati | Incorrect prices on | Starting HE19 the IS | | <29992592.1075839928 | 2001-10-30 21:03:49 | crcommunications@cai | CRCommunications | CAISO NOTICE: Data | To Market Participan | | <20631685.1075839928 | 2001-07-02 18:00:58 | [email protected] | Keoni" "Almeida | FW: CAISO Notice: Up | The price is still 9 | +----------------------+---------------------+----------------------+----------------------+----------------------+----------------------+

  2. Get the recipients of those emails, be it to/cc/bcc:

    select m.smtpid, r.reciptype, p.email, p.name from messages m join recipients r on m.messageid=r.messageid join people p on r.personid=p.personid limit 10;

    +-----------------------------------------------+-----------+------------------------------+-------------------------------------+ | smtpid | reciptype | email | name | +-----------------------------------------------+-----------+------------------------------+-------------------------------------+ | 2614099.1075839927264.JavaMail.evans@thyme | to | [email protected] | Market Status: Hour-Ahead/Real-Time | | 31442247.1075839927371.JavaMail.evans@thyme | to | [email protected] | Market Status: Hour-Ahead/Real-Time | | 1111763.1075839927587.JavaMail.evans@thyme | to | [email protected] | Market Status: Hour-Ahead/Real-Time | | 29147324.1075839927746.JavaMail.evans@thyme | to | [email protected] | Market Status: Hour-Ahead/Real-Time | | 17933220.1075839927790.JavaMail.evans@thyme | to | [email protected] | Market Status: Hour-Ahead/Real-Time | | 17725708.1075839927988.JavaMail.evans@thyme | to | [email protected] | Market Status: Hour-Ahead/Real-Time | | 29992592.1075839928142.JavaMail.evans@thyme | to | [email protected] | ISO Market Participants | | 29992592.1075839928142.JavaMail.evans@thyme | to | [email protected] | ISO Client Relations | | 20631685.1075839928414.JavaMail.evans@thyme | to | [email protected] | Bill Williams III | +-----------------------------------------------+-----------+------------------------------+-------------------------------------+

We can run that same query to dump the results as TSV, or "Tab Separated Values." MySQL's mysql client allows us to dump a query as TSV using the -e and -B options. -e executes a supplied query, and -B gives tab-delimited output. For simplicity's sake, we'll dump this data in more than one query.

Run these from the command line to perform the dumps.

[bash]$ mysql -u root -B -e "select m.smtpid as message_id, m.messagedt as date, s.email as from_address, s.name as from_name, m.subject as subject, b.body as body from messages m join people s on m.senderid=s.personid join bodies b on m.messageid=b.messageid;" enron > enron_messages.tsv
[bash]$ head enron_messages.tsv

message_id	date	from_address	from_name	subject	body
<2614099.1075839927264.JavaMail.evans@thyme>	2001-10-31 05:23:56	[email protected]	CAISO Market Operations - Hour Ahead	Path 30 mitigation	System Notification: At 0115 PST, WACM terminated request for coordinated\noperation controllable devices for Path 30 USF mitigation.
<31442247.1075839927371.JavaMail.evans@thyme>	2001-10-31 04:04:37	[email protected]	CAISO Market Operations - Realtime/BEEP	Path 15	Internal path flows are now below limits.  BEEP has been returned to normal\nmode (unsplit operation) as of 0000 hours.  BEEP will dispatch as one zone.\nSent by Market Operations, inquiries please call the Real Time Desk.\n\n\nThe system conditions described in this communication are dynamic and\nsubject to change.  While the ISO has attempted to reflect the most current,\naccurate information available in preparing this notice, system conditions\nmay change suddenly with little or no notice.

[bash]$ mysql -u root -B -e "select m.smtpid, r.reciptype, p.email, p.name from messages m join recipients r on m.messageid=r.messageid join people p on r.personid=p.personid" enron > enron_recipients.tsv
[bash]$ head enron_recipients.tsv

smtpid	reciptype	email	name
<2614099.1075839927264.JavaMail.evans@thyme>	to	[email protected]	Market Status: Hour-Ahead/Real-Time
<31442247.1075839927371.JavaMail.evans@thyme>	to	[email protected]	Market Status: Hour-Ahead/Real-Time
<1111763.1075839927587.JavaMail.evans@thyme>	to	[email protected]	Market Status: Hour-Ahead/Real-Time
<29147324.1075839927746.JavaMail.evans@thyme>	to	[email protected]	Market Status: Hour-Ahead/Real-Time
<17933220.1075839927790.JavaMail.evans@thyme>	to	[email protected]	Market Status: Hour-Ahead/Real-Time
<17725708.1075839927988.JavaMail.evans@thyme>	to	[email protected]	Market Status: Hour-Ahead/Real-Time
<29992592.1075839928142.JavaMail.evans@thyme>	to	[email protected]	ISO Market Participants
<29992592.1075839928142.JavaMail.evans@thyme>	to	[email protected]	ISO Client Relations
<20631685.1075839928414.JavaMail.evans@thyme>	to	[email protected]	Bill Williams III

ETL (Extract-Transform-Load) with Pig

We can now load our sql dump in Pig. I prefer to use several parameters when I use Pig in local mode. The '-l /tmp' option lets me put my pig logs in /tmp so they don't clutter my working directory. '-x local' tells Pig to run in local mode instead of Hadoop mode. '-v' enables verbose output, and '-w' enables warnings. These last two options are useful for debugging problems when working with a new dataset.

[bash]$ pig -l /tmp -x local -v -w

grunt> enron_messages = LOAD '/me/enron-avro/enron_messages.tsv' AS (
 
     message_id:chararray,
     sql_date:chararray,
     from_address:chararray,
     from_name:chararray,
     subject:chararray,
     body:chararray
  
);
grunt> describe enron_messages
enron_messages: {message_id: chararray,sql_date: chararray,from_address: chararray,from_name: chararray,subject: chararray,body: chararray}
grunt> illustrate enron_messages
     -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
| enron_messages     | message_id:chararray                          | sql_date:chararray    | from_address:chararray    | from_name:chararray    | subject:chararray                   | body:chararray                                                                                                  | 
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|                    | <33385450.1075839957796.JavaMail.evans@thyme> | 2002-01-25 12:56:33   | [email protected]      | Pete Davis             | Schedule Crawler: HourAhead Failure | \n\nStart Date: 1/25/02; HourAhead hour: 11;  HourAhead schedule download failed. Manual intervention required. | 
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

grunt>  

Data Processing with Pig

If Perl is the duct tape of the internet, then Pig is the duct tape of Big Data(TM). Pig can easily transform data from one format to another. In this case, we'll use Pig to transform raw TSV to semi-structured Avro records.

Avro-izing our Data with Pig

Now we've got our data in document format in Pig, with a schema. Lets save our data in Avro format to persist this schema. To do so, we need to register the jars that Avro needs, as well as Piggybank for the AvroStorage UDF itself. We'll also define a short form of the AvroStorage command, as the fully qualified name is java-long.

register /me/pig/contrib/piggybank/java/piggybank.jar

register /me/pig/build/ivy/lib/Pig/avro-1.5.3.jar
register /me/pig/build/ivy/lib/Pig/json-simple-1.1.jar
register /me/pig/build/ivy/lib/Pig/joda-time-1.6.jar

define AvroStorage org.apache.pig.piggybank.storage.avro.AvroStorage();
define CustomFormatToISO org.apache.pig.piggybank.evaluation.datetime.convert.CustomFormatToISO();

set default_parallel 10
set aggregate.warning true
rmf /enron/emails.avro

enron_messages = load '/enron/enron_messages.tsv' as (
     message_id:chararray,
     sql_date:chararray,
     from_address:chararray,
     from_name:chararray,
     subject:chararray,
     body:chararray
);

enron_recipients = load '/enron/enron_recipients.tsv' as (
    message_id:chararray,
    reciptype:chararray,
    address:chararray,
    name:chararray
);

split enron_recipients into tos IF reciptype=='to', ccs IF reciptype=='cc', bccs IF reciptype=='bcc';

headers = cogroup tos by message_id, ccs by message_id, bccs by message_id parallel 10;
with_headers = join headers by group, enron_messages by message_id parallel 10;
emails = foreach with_headers generate enron_messages::message_id as message_id, 
                                  CustomFormatToISO(enron_messages::sql_date, 'yyyy-MM-dd HH:mm:ss') as date,
                                  TOTUPLE(enron_messages::from_address, enron_messages::from_name) as from:tuple(address:chararray, name:chararray),
                                  enron_messages::subject as subject,
                                  enron_messages::body as body,
                                  headers::tos.(address, name) as tos,
                                  headers::ccs.(address, name) as ccs,
                                  headers::bccs.(address, name) as bccs;

store emails into '/enron/emails.avro' using AvroStorage('{"fields": [{"doc": "", "type": ["null", "string"], "name": "message_id"}, {"type": ["string", "null"], "name": "date"}, {"fields": [{"doc": "", "type": ["null", "string"], "name": "name"}, {"doc": "", "type": ["null", "string"], "name": "address"}], "type": "record", "name": "from"}, {"type": ["string", "null"], "name": "subject"}, {"type": ["string", "null"], "name": "body"}, {"doc": "", "type": ["null", {"items": ["null", {"fields": [{"doc": "", "type": ["null", "string"], "name": "name"}, {"doc": "", "type": ["null", "string"], "name": "address"}], "type": "record", "name": "to"}], "type": "array"}], "name": "tos"}, {"doc": "", "type": ["null", {"items": ["null", {"fields": [{"doc": "", "type": ["null", "string"], "name": "name"}, {"doc": "", "type": ["null", "string"], "name": "address"}], "type": "record", "name": "cc"}], "type": "array"}], "name": "ccs"}, {"doc": "", "type": ["null", {"items": ["null", {"fields": [{"doc": "", "type": ["null", "string"], "name": "name"}, {"doc": "", "type": ["null", "string"], "name": "address"}], "type": "record", "name": "bcc"}], "type": "array"}], "name": "bccs"}], "type": "record", "name": "Email"}');

[bash]$ ls /enron/emails.avro

part-m-00001.avro       part-m-00004.avro       part-m-00006.avro       part-m-00009.avro
part-m-00002.avro       part-m-00005.avro       part-m-00007.avro
part-m-00000.avro       part-m-00003.avro       part-m-00008.avro

Cat Avro

We can cat these Avro encoded files using a simple python utility I wrote, called cat_avro. A less robust Ruby version of cat_avro is available here.

The script uses the Python Avro library, and is pretty simple:

from avro import schema, datafile, io

...

for record in df_reader:
  if i > 20:
    break
  i += 1
  if field_id:
    pp.pprint(record[field_id])
  else:
    pp.pprint(record)

[bash]$ cat_avro /enron/emails.avro/part-m-00001.avro

...

{u'bccs': [],
 u'body': u'Where is my new Oglethorpe sheet?',
 u'ccs': [],
 u'date': u'2001-01-10T07:28:00.000Z',
 u'from': {u'address': u'[email protected]', u'name': u'Chris Germany'},
 u'message_id': u'<1623.1075853869290.JavaMail.evans@thyme>',
 u'subject': u'Ogy',
 u'tos': [{u'address': u'[email protected]', u'name': u'Jim Homco'}]}

The cat_avro utility prints 20 records and then the schema of the records.

Loading avros with AvroStorage

Note that a schema is included with each data file, so that it lives with the data. This is convenient. From now on we don't have to cast our data as we load it like we did before.

grunt> enron_emails = LOAD '/enron/emails.avro' USING AvroStorage();
grunt> describe enron_emails

emails: {message_id: chararray,date: chararray,from: (address: chararray,name: chararray),subject: chararray,body: chararray,tos: {ARRAY_ELEM: (address: chararray,name: chararray)},ccs: {ARRAY_ELEM: (address: chararray,name: chararray)},bccs: {ARRAY_ELEM: (address: chararray,name: chararray)}}

grunt> illustrate enron_emails

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
| emails     | message_id:chararray                         | orig_date:chararray    | datetime:chararray       | from_address:chararray    | from_name:chararray                       | subject:chararray     | body:chararray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tos:bag{ARRAY_ELEM:tuple(address:chararray,name:chararray)}             | ccs:bag{ARRAY_ELEM:tuple(address:chararray,name:chararray)}             | bccs:bag{ARRAY_ELEM:tuple(address:chararray,name:chararray)}             | 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|            | <8218544.1075844279771.JavaMail.evans@thyme> | 2000-09-05 13:05:00    | 2000-09-05T13:05:00.000Z | [email protected]          | DDH Product Design, Inc." "David Hayslett | Family Reunion Photos | Rod,\n\n It was nice to talk to you this evening. It did sound like you\n had a cold. There is no way to protect from going from air\n conditioning to the outside heat/humidity then back into\n the air conditioning. Just try to get some rest and we'll think positive\n for some cooler weather for you.\n\n Attached pls. find the photos I spoke of. There were 30 of them and I\nnarrowed them to the family I could name. I'll write more later.\n It would be great if you all came out around the holidays!\n Love,\n\n Dave........... \n - Family_Reunion_2000.zip\n | {([email protected], )}                                               | {([email protected], )}                                            | {([email protected], )}                                             | 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Conclusion

We've seen how Pig can be used to take SQL data and convert it to well formed document data with Avro. The Berkeley Enron emails are available in Avro document format here.

About

Code for creating and querying an Avro encoded repository of the UC Berkeley Enron email archive

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published