This code reads data from netcdf files (downloaded from CDS) and makes plots for selected stations showing HCI values under different RCP scenarios.
source("common.R", local = knitr::knit_global())
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Read and process all data for HCI:
all_hci_data <- assembledata("hci")
## [1] "historical 1986_2005 mean fair"
## [1] "historical 1986_2005 mean good"
## [1] "historical 1986_2005 mean unf"
## [1] "historical 1986_2005 10prct fair"
## [1] "historical 1986_2005 10prct good"
## [1] "historical 1986_2005 10prct unf"
## [1] "historical 1986_2005 90prct fair"
## [1] "historical 1986_2005 90prct good"
## [1] "historical 1986_2005 90prct unf"
## [1] "RCP2.6 2021_2040 mean fair"
## [1] "RCP2.6 2021_2040 mean good"
## [1] "RCP2.6 2021_2040 mean unf"
## [1] "RCP2.6 2021_2040 10prct fair"
## [1] "RCP2.6 2021_2040 10prct good"
## [1] "RCP2.6 2021_2040 10prct unf"
## [1] "RCP2.6 2021_2040 90prct fair"
## [1] "RCP2.6 2021_2040 90prct good"
## [1] "RCP2.6 2021_2040 90prct unf"
## [1] "RCP2.6 2041_2060 mean fair"
## [1] "RCP2.6 2041_2060 mean good"
## [1] "RCP2.6 2041_2060 mean unf"
## [1] "RCP2.6 2041_2060 10prct fair"
## [1] "RCP2.6 2041_2060 10prct good"
## [1] "RCP2.6 2041_2060 10prct unf"
## [1] "RCP2.6 2041_2060 90prct fair"
## [1] "RCP2.6 2041_2060 90prct good"
## [1] "RCP2.6 2041_2060 90prct unf"
## [1] "RCP2.6 2081_2100 mean fair"
## [1] "RCP2.6 2081_2100 mean good"
## [1] "RCP2.6 2081_2100 mean unf"
## [1] "RCP2.6 2081_2100 10prct fair"
## [1] "RCP2.6 2081_2100 10prct good"
## [1] "RCP2.6 2081_2100 10prct unf"
## [1] "RCP2.6 2081_2100 90prct fair"
## [1] "RCP2.6 2081_2100 90prct good"
## [1] "RCP2.6 2081_2100 90prct unf"
## [1] "RCP4.5 2021_2040 mean fair"
## [1] "RCP4.5 2021_2040 mean good"
## [1] "RCP4.5 2021_2040 mean unf"
## [1] "RCP4.5 2021_2040 10prct fair"
## [1] "RCP4.5 2021_2040 10prct good"
## [1] "RCP4.5 2021_2040 10prct unf"
## [1] "RCP4.5 2021_2040 90prct fair"
## [1] "RCP4.5 2021_2040 90prct good"
## [1] "RCP4.5 2021_2040 90prct unf"
## [1] "RCP4.5 2041_2060 mean fair"
## [1] "RCP4.5 2041_2060 mean good"
## [1] "RCP4.5 2041_2060 mean unf"
## [1] "RCP4.5 2041_2060 10prct fair"
## [1] "RCP4.5 2041_2060 10prct good"
## [1] "RCP4.5 2041_2060 10prct unf"
## [1] "RCP4.5 2041_2060 90prct fair"
## [1] "RCP4.5 2041_2060 90prct good"
## [1] "RCP4.5 2041_2060 90prct unf"
## [1] "RCP4.5 2081_2100 mean fair"
## [1] "RCP4.5 2081_2100 mean good"
## [1] "RCP4.5 2081_2100 mean unf"
## [1] "RCP4.5 2081_2100 10prct fair"
## [1] "RCP4.5 2081_2100 10prct good"
## [1] "RCP4.5 2081_2100 10prct unf"
## [1] "RCP4.5 2081_2100 90prct fair"
## [1] "RCP4.5 2081_2100 90prct good"
## [1] "RCP4.5 2081_2100 90prct unf"
## [1] "RCP8.5 2021_2040 mean fair"
## [1] "RCP8.5 2021_2040 mean good"
## [1] "RCP8.5 2021_2040 mean unf"
## [1] "RCP8.5 2021_2040 10prct fair"
## [1] "RCP8.5 2021_2040 10prct good"
## [1] "RCP8.5 2021_2040 10prct unf"
## [1] "RCP8.5 2021_2040 90prct fair"
## [1] "RCP8.5 2021_2040 90prct good"
## [1] "RCP8.5 2021_2040 90prct unf"
## [1] "RCP8.5 2041_2060 mean fair"
## [1] "RCP8.5 2041_2060 mean good"
## [1] "RCP8.5 2041_2060 mean unf"
## [1] "RCP8.5 2041_2060 10prct fair"
## [1] "RCP8.5 2041_2060 10prct good"
## [1] "RCP8.5 2041_2060 10prct unf"
## [1] "RCP8.5 2041_2060 90prct fair"
## [1] "RCP8.5 2041_2060 90prct good"
## [1] "RCP8.5 2041_2060 90prct unf"
## [1] "RCP8.5 2081_2100 mean fair"
## [1] "RCP8.5 2081_2100 mean good"
## [1] "RCP8.5 2081_2100 mean unf"
## [1] "RCP8.5 2081_2100 10prct fair"
## [1] "RCP8.5 2081_2100 10prct good"
## [1] "RCP8.5 2081_2100 10prct unf"
## [1] "RCP8.5 2081_2100 90prct fair"
## [1] "RCP8.5 2081_2100 90prct good"
## [1] "RCP8.5 2081_2100 90prct unf"
All relevant data is in alldata
, where column stationid
is the index
of the grid point in the raw imported data, scenario
is either
“historical”, “RCP2.6”, “RCP4.5” or “RCP8.5”, time_period
is either
“1986-2005”, “2021-2040”, “2041-2060” or “2081-2100”, metric
is the
mean, 10th percentile or 90th percentile, day_cat
is either “fair”,
“good” or “unf” (category determined based on HCI value), datapoint
is
the count of days in day_cat
category for a specific month and metric,
month
is the month for which the datapoint was calculated.
head(all_hci_data)
## stationid scenario time_period metric day_cat month datapoint
## 1 661 historical 1986-2005 mean fair jan 16.941667
## 2 661 historical 1986-2005 mean fair feb 13.875000
## 3 661 historical 1986-2005 mean fair mar 11.141667
## 4 661 historical 1986-2005 mean fair apr 7.383333
## 5 661 historical 1986-2005 mean fair may 4.583333
## 6 661 historical 1986-2005 mean fair jun 2.091667
Plot data for all stations and scenarios:
for (stat_id in gridpoint_indexes) {
for (scen in scenarios) {
p <- plothcidata(stat_id, scen, all_hci_data)
print(p)
}
}
Save all the plots:
for (stat_id in gridpoint_indexes) {
for (scen in scenarios) {
stat_name <- names[match(stat_id, gridpoint_indexes)]
print(paste("HCI", stat_name, scen))
p <- plothcidata(stat_id, scen, all_hci_data)
ggsave(paste("copernicus-HCI_", gsub(" ", "_", stat_name), "_", scen, ".pdf", sep=""), p, width=9, height=4, units="in", path="../output/pdf/copernicus-HCI", device=cairo_pdf)
ggsave(paste("copernicus-HCI_", gsub(" ", "_", stat_name), "_", scen, ".eps", sep=""), p, width=9, height=4, units="in", path="../output/eps/copernicus-HCI", device=cairo_ps)
ggsave(paste("copernicus-HCI_", gsub(" ", "_", stat_name), "_", scen, ".svg", sep=""), p, width=9, height=4, units="in", path="../output/svg/copernicus-HCI")
ggsave(paste("copernicus-HCI_", gsub(" ", "_", stat_name), "_", scen, ".png", sep=""), p, width=9, height=4, units="in", path="../output/png/copernicus-HCI", dpi=500)
}
}