Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
rouyang2017 authored Aug 24, 2024
1 parent 2aa5b81 commit e01e756
Show file tree
Hide file tree
Showing 5 changed files with 80 additions and 0 deletions.
38 changes: 38 additions & 0 deletions input_templates/SISSO.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Texts after a exclamation mark (!) are comments
! The (R), (C) and (R&C) denotes the keyword used by regression, classification, and both, respectively.
! A complete list and more explanations on these keywords can be found in the SISSO_Guide.pdf
! The setting below is just an example, and user may need to change them for their jobs.
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ptype=1 !Property type 1: regression, 2:classification.
ntask=1 !(R&C) Multi-task learning (MTL) is invoked if >1.
scmt=.false. !(R) Sign-Constrained MTL is invoked if .true.
desc_dim=2 !(R&C) Dimension of the descriptor/model.
nsample=5 !(R) Number of samples in train.dat. Set nsample=N1,N2,... for MTL.
!nsample=(n1,n2,...) !(C) Number of samples. Set nsample=(n1,n2,...),(m1,m2,...),... for MTL.
restart=0 !(R&C) 0: starts from scratch, 1: continues the job(progress in the file CONTINUE)

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Feature construction (FC) and sure independence screening (SIS)
! Implemented operators:(+)(-)(*)(/)(exp)(exp-)(^-1)(^2)(^3)(sqrt)(cbrt)(log)(|-|)(scd)(^6)(sin)(cos)
! scd: standard Cauchy distribution
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
fstore=1 !(R&C) Features storage in memory. 1: by data (fast); 2: by S-expression (low-memory)
nsf= 3 !(R&C) Number of scalar features provided in the file train.dat
ops='(+)(-)(*)(/)' !(R&C) Operators to be customized by user from the list shown above.
fcomplexity=3 !(R&C) Maximal feature complexity (# of operators in a feature), starting from 0.
funit=(1:2)(3:3) !(R&C) Feature unit: (n1:n2), features from n1 to n2 in train.dat have the same unit
fmax_min=1e-3 !(R&C) The feature will be discarded if the max. abs. value in it is < fmax_min.
fmax_max=1e5 !(R&C) The feature will be discarded if the max. abs. value in it is > fmax_max.
nf_sis=50000 !(R&C) Number of features in each of the SIS-selected subspace.

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Descriptor identification (DI) via sparse regression (SO)
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
method_so= 'L0' !(R&C) 'L0' or 'L1L0'(LASSO+L0). 'L0' is always recommended.
fit_intercept=.true. !(R) Fit to a nonzero (.true.) or zero (.false.) intercept for the linear model.
metric= 'RMSE' !(R) The metric for model selection in regression: RMSE or MaxAE (max absolute error)
nmodel=100 !(R&C) Number of the top-ranked models to output (see the folder 'Models')
isconvex=(1,1,...) !(C) Each data group constrained to be convex domain, 1: YES; 0: NO
bwidth=0.001 !(C) Boundary tolerance for classification

6 changes: 6 additions & 0 deletions input_templates/train.dat_classification
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
materials feature1 feature2 feature3
sample1_group1 0.8626 0.7043 0.6312
sample2_group1 0.7260 0.7818 0.6119
sample1_group2 0.4943 0.0044 0.4420
sample2_group2 0.0106 0.0399 0.9877
sample3_group2 0.0970 0.3199 0.5504
17 changes: 17 additions & 0 deletions input_templates/train.dat_classification_multitask
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
materials feature1 feature2 feature3
sample1_group1_task1 xxx xxx xxx
sample2_group1_task1 xxx xxx xxx
sample1_group2_task1 xxx xxx xxx
sample2_group2_task1 xxx xxx xxx
sample3_group2_task1 xxx xxx xxx
sample1_group1_task2 xxx xxx xxx
sample2_group1_task2 xxx xxx xxx
sample3_group1_task2 xxx xxx xxx
sample4_group1_task2 xxx xxx xxx
sample1_group2_task2 xxx xxx xxx
sample2_group2_task2 xxx xxx xxx
sample3_group2_task2 xxx xxx xxx
sample4_group2_task2 xxx xxx xxx
sample1_group3_task2 xxx xxx xxx
sample2_group3_task2 xxx xxx xxx
sample3_group3_task2 xxx xxx xxx
6 changes: 6 additions & 0 deletions input_templates/train.dat_regression
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
materials property feature1 feature2 feature3
sample1 3.0862 0.8626 0.7043 0.6312
sample2 2.8854 0.7260 0.7818 0.6119
sample3 0.6907 0.4943 0.0044 0.4420
sample4 0.9902 0.0106 0.0399 0.9877
sample5 0.7242 0.0970 0.3199 0.5504
13 changes: 13 additions & 0 deletions input_templates/train.dat_regression_multitask
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
materials property feature1 feature2 feature3
sample1_task1 xxx xxx xxx xxx
sample2_task1 xxx xxx xxx xxx
sample3_task1 xxx xxx xxx xxx
sample4_task1 xxx xxx xxx xxx
sample5_task1 xxx xxx xxx xxx
sample1_task2 xxx xxx xxx xxx
sample2_task2 xxx xxx xxx xxx
sample3_task2 xxx xxx xxx xxx
sample4_task2 xxx xxx xxx xxx
sample5_task2 xxx xxx xxx xxx
sample6_task2 xxx xxx xxx xxx
sample7_task2 xxx xxx xxx xxx

0 comments on commit e01e756

Please sign in to comment.