Skip to content
forked from ReaFly/LDNet

MICCAI 2022 : Lesion-aware Dynamic Kernel for Polyp Segmentation (Pytorch implementation).

Notifications You must be signed in to change notification settings

royasotude/LDNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lesion-Aware Dynamic Kernel for Polyp Segmentation

Introduction

This repository contains the PyTorch implementation of:

Lesion-Aware Dynamic Kernel for Polyp Segmentation, MICCAI 2022.

Requirements

  • torch
  • torchvision
  • tqdm
  • opencv
  • scipy
  • skimage
  • PIL
  • numpy

Usage

1. Training

python train.py  --root /path-to-project  --mode train
--train_data_dir /path-to-train_data   --valid_data_dir  /path-to-valid_data

2. Inference

python test.py  --root /path-to-project  --mode test  --load_ckpt checkpoint  
--test_data_dir  /path-to-test_data

Citation

If you feel this work is helpful, please cite our paper

@inproceedings{zhang2022lesion,
  title={Lesion-Aware Dynamic Kernel for Polyp Segmentation},
  author={Zhang, Ruifei and Lai, Peiwen and Wan, Xiang and Fan, De-Jun and Gao, Feng and Wu, Xiao-Jian and Li, Guanbin},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={99--109},
  year={2022},
  organization={Springer}
}

About

MICCAI 2022 : Lesion-aware Dynamic Kernel for Polyp Segmentation (Pytorch implementation).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%