Skip to content

Commit

Permalink
*release*
Browse files Browse the repository at this point in the history
  • Loading branch information
rtqichen committed Aug 19, 2019
0 parents commit ca812c1
Show file tree
Hide file tree
Showing 33 changed files with 5,444 additions and 0 deletions.
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
*.pyc
*__pycache__*
data/*
pretrained_models
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2019 Ricky Tian Qi Chen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
87 changes: 87 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Residual Flows for Invertible Generative Modeling [[arxiv](https://arxiv.org/abs/1906.02735)]

<p align="center">
<img align="middle" src="./assets/flow_comparison.jpg" width="666" />
</p>

Building on the use of [Invertible Residual Networks](https://arxiv.org/abs/1811.00995) in generative modeling, we propose:
+ Unbiased estimation of the log-density of samples.
+ Memory-efficient reformulation of the gradients.
+ LipSwish activation function.

As a result, Residual Flows scale to much larger networks and datasets.

<p align="center">
<img align="middle" src="./assets/celebahq_resflow.jpg" width="512" />
</p>

## Requirements

- PyTorch 1.0+
- Python 3.6+

## Preprocessing
ImageNet:
1. Follow instructions in `preprocessing/create_imagenet_benchmark_datasets`.
2. Convert .npy files to .pth using `preprocessing/convert_to_pth`.
3. Place in `data/imagenet32` and `data/imagenet64`.

CelebAHQ 64x64 5bit:

1. Download from https://github.com/aravindsrinivas/flowpp/tree/master/flows_celeba.
2. Convert .npy files to .pth using `preprocessing/convert_to_pth`.
3. Place in `data/celebahq64_5bit`.

CelebAHQ 256x256:
```
# Download Glow's preprocessed dataset.
wget https://storage.googleapis.com/glow-demo/data/celeba-tfr.tar
tar -C data/celebahq -xvf celeb-tfr.tar
python extract_celeba_from_tfrecords
```

## Density Estimation Experiments

MNIST:
```
python train_img.py --data mnist --imagesize 28 --actnorm True --wd 0 --save experiments/mnist
```

CIFAR10:
```
python train_img.py --data cifar10 --actnorm True --save experiments/cifar10
```

ImageNet 32x32:
```
python train_img.py --data imagenet32 --actnorm True --nblocks 32-32-32 --save experiments/imagenet32
```

ImageNet 64x64:
```
python train_img.py --data imagenet64 --imagesize 64 --actnorm True --nblocks 32-32-32 --factor-out True --squeeze-first True --save experiments/imagenet64
```

CelebAHQ 256x256:
```
python train_img.py --data celebahq --imagesize 256 --nbits 5 --actnorm True --act elu --batchsize 8 --update-freq 5 --n-exact-terms 8 --fc-end False --factor-out True --squeeze-first True --nblocks 16-16-16-16-16-16 --save experiments/celebahq256
```

## Pretrained Models

Model checkpoints can be downloaded from [releases](https://github.com/rtqichen/residual-flows/releases/latest).

Use the argument `--resume [checkpt.pth]` to evaluate or sample from the model.

Each checkpoint contains two sets of parameters, one from training and one containing the exponential moving average (EMA) accumulated over the course of training. Scripts will automatically use the EMA parameters for evaluation and sampling.

## BibTeX
```
@inproceedings{chen2019residualflows,
title={Residual Flows for Invertible Generative Modeling},
author={Chen, Ricky T. Q. and Behrmann, Jens and Duvenaud, David and Jacobsen, J{\"{o}}rn{-}Henrik},
journal={CoRR},
volume={abs/1906.02735},
year={2019}
}
```
Binary file added assets/celebahq_resflow.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added assets/flow_comparison.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
103 changes: 103 additions & 0 deletions lib/datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
import torch
import torchvision.datasets as vdsets


class Dataset(object):

def __init__(self, loc, transform=None, in_mem=True):
self.in_mem = in_mem
self.dataset = torch.load(loc)
if in_mem: self.dataset = self.dataset.float().div(255)
self.transform = transform

def __len__(self):
return self.dataset.size(0)

@property
def ndim(self):
return self.dataset.size(1)

def __getitem__(self, index):
x = self.dataset[index]
if not self.in_mem: x = x.float().div(255)
x = self.transform(x) if self.transform is not None else x
return x, 0


class MNIST(object):

def __init__(self, dataroot, train=True, transform=None):
self.mnist = vdsets.MNIST(dataroot, train=train, download=True, transform=transform)

def __len__(self):
return len(self.mnist)

@property
def ndim(self):
return 1

def __getitem__(self, index):
return self.mnist[index]


class CIFAR10(object):

def __init__(self, dataroot, train=True, transform=None):
self.cifar10 = vdsets.CIFAR10(dataroot, train=train, download=True, transform=transform)

def __len__(self):
return len(self.cifar10)

@property
def ndim(self):
return 3

def __getitem__(self, index):
return self.cifar10[index]


class CelebA5bit(object):

LOC = 'data/celebahq64_5bit/celeba_full_64x64_5bit.pth'

def __init__(self, train=True, transform=None):
self.dataset = torch.load(self.LOC).float().div(31)
if not train:
self.dataset = self.dataset[:5000]
self.transform = transform

def __len__(self):
return self.dataset.size(0)

@property
def ndim(self):
return self.dataset.size(1)

def __getitem__(self, index):
x = self.dataset[index]
x = self.transform(x) if self.transform is not None else x
return x, 0


class CelebAHQ(Dataset):
TRAIN_LOC = 'data/celebahq/celeba256_train.pth'
TEST_LOC = 'data/celebahq/celeba256_validation.pth'

def __init__(self, train=True, transform=None):
return super(CelebAHQ, self).__init__(self.TRAIN_LOC if train else self.TEST_LOC, transform)


class Imagenet32(Dataset):
TRAIN_LOC = 'data/imagenet32/train_32x32.pth'
TEST_LOC = 'data/imagenet32/valid_32x32.pth'

def __init__(self, train=True, transform=None):
return super(Imagenet32, self).__init__(self.TRAIN_LOC if train else self.TEST_LOC, transform)


class Imagenet64(Dataset):
TRAIN_LOC = 'data/imagenet64/train_64x64.pth'
TEST_LOC = 'data/imagenet64/valid_64x64.pth'

def __init__(self, train=True, transform=None):
return super(Imagenet64, self).__init__(self.TRAIN_LOC if train else self.TEST_LOC, transform, in_mem=False)
8 changes: 8 additions & 0 deletions lib/layers/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
from .act_norm import *
from .container import *
from .coupling import *
from .elemwise import *
from .iresblock import *
from .normalization import *
from .squeeze import *
from .glow import *
79 changes: 79 additions & 0 deletions lib/layers/act_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
import torch
import torch.nn as nn
from torch.nn import Parameter

__all__ = ['ActNorm1d', 'ActNorm2d']


class ActNormNd(nn.Module):

def __init__(self, num_features, eps=1e-12):
super(ActNormNd, self).__init__()
self.num_features = num_features
self.eps = eps
self.weight = Parameter(torch.Tensor(num_features))
self.bias = Parameter(torch.Tensor(num_features))
self.register_buffer('initialized', torch.tensor(0))

@property
def shape(self):
raise NotImplementedError

def forward(self, x, logpx=None):
c = x.size(1)

if not self.initialized:
with torch.no_grad():
# compute batch statistics
x_t = x.transpose(0, 1).contiguous().view(c, -1)
batch_mean = torch.mean(x_t, dim=1)
batch_var = torch.var(x_t, dim=1)

# for numerical issues
batch_var = torch.max(batch_var, torch.tensor(0.2).to(batch_var))

self.bias.data.copy_(-batch_mean)
self.weight.data.copy_(-0.5 * torch.log(batch_var))
self.initialized.fill_(1)

bias = self.bias.view(*self.shape).expand_as(x)
weight = self.weight.view(*self.shape).expand_as(x)

y = (x + bias) * torch.exp(weight)

if logpx is None:
return y
else:
return y, logpx - self._logdetgrad(x)

def inverse(self, y, logpy=None):
assert self.initialized
bias = self.bias.view(*self.shape).expand_as(y)
weight = self.weight.view(*self.shape).expand_as(y)

x = y * torch.exp(-weight) - bias

if logpy is None:
return x
else:
return x, logpy + self._logdetgrad(x)

def _logdetgrad(self, x):
return self.weight.view(*self.shape).expand(*x.size()).contiguous().view(x.size(0), -1).sum(1, keepdim=True)

def __repr__(self):
return ('{name}({num_features})'.format(name=self.__class__.__name__, **self.__dict__))


class ActNorm1d(ActNormNd):

@property
def shape(self):
return [1, -1]


class ActNorm2d(ActNormNd):

@property
def shape(self):
return [1, -1, 1, 1]
3 changes: 3 additions & 0 deletions lib/layers/base/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .activations import *
from .lipschitz import *
from .mixed_lipschitz import *
75 changes: 75 additions & 0 deletions lib/layers/base/activations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import torch
import torch.nn as nn
import torch.nn.functional as F


class Identity(nn.Module):

def forward(self, x):
return x


class FullSort(nn.Module):

def forward(self, x):
return torch.sort(x, 1)[0]


class MaxMin(nn.Module):

def forward(self, x):
b, d = x.shape
max_vals = torch.max(x.view(b, d // 2, 2), 2)[0]
min_vals = torch.min(x.view(b, d // 2, 2), 2)[0]
return torch.cat([max_vals, min_vals], 1)


class LipschitzCube(nn.Module):

def forward(self, x):
return (x >= 1).to(x) * (x - 2 / 3) + (x <= -1).to(x) * (x + 2 / 3) + ((x > -1) * (x < 1)).to(x) * x**3 / 3


class SwishFn(torch.autograd.Function):

@staticmethod
def forward(ctx, x, beta):
beta_sigm = torch.sigmoid(beta * x)
output = x * beta_sigm
ctx.save_for_backward(x, output, beta)
return output / 1.1

@staticmethod
def backward(ctx, grad_output):
x, output, beta = ctx.saved_tensors
beta_sigm = output / x
grad_x = grad_output * (beta * output + beta_sigm * (1 - beta * output))
grad_beta = torch.sum(grad_output * (x * output - output * output)).expand_as(beta)
return grad_x / 1.1, grad_beta / 1.1


class Swish(nn.Module):

def __init__(self):
super(Swish, self).__init__()
self.beta = nn.Parameter(torch.tensor([0.5]))

def forward(self, x):
return (x * torch.sigmoid_(x * F.softplus(self.beta))).div_(1.1)


if __name__ == '__main__':

m = Swish()
xx = torch.linspace(-5, 5, 1000).requires_grad_(True)
yy = m(xx)
dd, dbeta = torch.autograd.grad(yy.sum() * 2, [xx, m.beta])

import matplotlib.pyplot as plt

plt.plot(xx.detach().numpy(), yy.detach().numpy(), label='Func')
plt.plot(xx.detach().numpy(), dd.detach().numpy(), label='Deriv')
plt.plot(xx.detach().numpy(), torch.max(dd.detach().abs() - 1, torch.zeros_like(dd)).numpy(), label='|Deriv| > 1')
plt.legend()
plt.tight_layout()
plt.show()
Loading

0 comments on commit ca812c1

Please sign in to comment.