Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
wang-chen committed Jun 19, 2020
2 parents a02e657 + 89d86c5 commit b1e7b89
Showing 1 changed file with 105 additions and 1 deletion.
106 changes: 105 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,108 @@


# Dependencies
Matplotlib, PyTorch, TorchVision, OpenCV

conda install -c conda-forge matplotlib
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
conda install -c conda-forge opencv

## Long-term Learning

* Download [coco](http://cocodataset.org) dataset into folder "data-root", so that it looks like:

data-root
├──coco
├── annotations
│   ├── annotations_trainval2017
│   └── image_info_test2017
└── images
├── test2017
├── train2017
└── val2017


* Install coco dataset tools (required by PyTorch).

conda install -c conda-forge pycocotools

* Run

python3 train_coder.py --data-root [data-root] --model-save saves/ae.pt
# This requires a long time for training on single GPU.
# Create a folder "saves" manually and a model named "ae.pt" will be saved.

* You may skip this step, if you download the pre-trained [at.pt](link).


## Short-term Learning

* Dowload the [SubT](http://theairlab.org/dataset/interestingness) front camera data (SubTF) and put into folder "data-root", so that it looks like:

data-root
├──SubTF
├── 0817-ugv0-tunnel0
├── 0817-ugv1-tunnel0
├── 0818-ugv0-tunnel1
├── 0818-ugv1-tunnel1
├── 0820-ugv0-tunnel1
├── 0821-ugv0-tunnel0
├── 0821-ugv1-tunnel0
├── ground-truth
└── train

* Run

python3 train_interest.py --data-root [data-root] --model-save saves/ae.pt --dataset SubTF --memory-size 1000 --save-flag n1000
# This will read the previous model "ae.pt".
# A new model "ae.pt.SubTF.n1000.mse" will be generated.

* You may skip this step, if you download the pre-trained [ae.pt.SubTF.n1000.mse](link).


## On-line Learning

* Run

python3 test_interest.py --data-root [data-root] --model-save saves/ae.pt.SubTF.n1000.mse --dataset SubTF --test-data 0

# --test-data The sequence ID in the dataset SubTF, [0-6] is avaiable
# This will read the trained model "ae.pt.SubTF.n1000.mse" from short-term learning.
* For convenience, you may run

bash test.sh

* This will generate results files that are compatible with the evaluation metric in [SubT](https://github.com/wang-chen/SubT.git)

* You may skip this step, if you download our generated [results](link).


# Evaluation

* We follow the [SubT](https://github.com/wang-chen/SubT.git) tutorial for evaluation, simply run

python performance.py --data-root [data-root] --save-flag n1000 --category interest-1
# mean accuracy: [0.66235087 0.84281507 0.95655934]

python performance.py --data-root [data-root] --save-flag n1000 --category interest-2
# mean accuracy: [0.40703316 0.58456123 0.76820896]
* This will generate performance figures and create data curves for two categories in folder "performance".


# Citation

@article{wang2020visual,
author = {Wang, Chen and Wang, Wenshan and Qiu, Yuheng and Hu, Yafei and Scherer, Sebastian},
journal = {arXiv preprint arXiv:2005.08829},
title = {{Visual Memorability for Robotic Interestingness via Unsupervised Online Learning}},
year = {2020}
}

---
You may watch the following video to catch the idea of this work.

[<img src="https://img.youtube.com/vi/gBBdYdUrIcw/maxresdefault.jpg" width="100%">](https://youtu.be/gBBdYdUrIcw)
[<img src="https://img.youtube.com/vi/gBBdYdUrIcw/maxresdefault.jpg" width="100%">](https://youtu.be/gBBdYdUrIcw)

0 comments on commit b1e7b89

Please sign in to comment.