Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Neural Quantum States (NQS) for Quantum Chemistry #47

Merged
merged 6 commits into from
Jan 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions examples/neural_quantum_states/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# AUTOREGRESSIVE NEURAL QUANTUM STATES FOR QUANTUM CHEMISTRY

This repository contains code jointly developed between the University of Michigan and SandboxAQ to implement the retentive network (RetNet) neural quantum states ansatz outlined in the paper, "Retentive Neural Quantum States: Efficient Ansatze for Ab Initio Quantum Chemistry," by Oliver Knitter, Dan Zhao, James Stokes, Martin Ganahl, Stefan Leichenauer, and Shravan Veerapaneni.

Preprint available on the arXiv: https://arxiv.org/abs/2411.03900

Corresponding Author: Oliver Knitter, [email protected]

This repository is an elaboration/refactoring of the code Tianchen Zhao released (https://github.com/Ericolony/made-qchem) alongside the paper "Scalable neural quantum states architecture for quantum chemistry" (https://arxiv.org/abs/2208.05637). This new code uses neural quantum states (NQS), implemented in PyTorch to calculate electronic ground state energies for second quantized molecular Hamiltonians. Though not exactly a quantum or hybrid algorithm, this workflow makes use of Tangelo (https://github.com/sandbox-quantum/Tangelo/) and PySCF to calculate Jordan--Wigner encodings of the electronic Hamiltonians, along with some classical chemistry benchmark values. These uses of Tangelo are mainly found in the subdirectory src/data/.

The RetNet ansatz implementation was made using the yet-another-retnet repository (https://github.com/fkodom/yet-another-retnet). Other ansatze available are the MADE and Transformer ansatze, which are implemented natively in PyTorch. The Hamiltonian expectation value estimates are calculated following the procedure outlined in Zhao et al.'s paper, but the modular structure of the code allows for relatively simple plug-and-play implementations of different models and Hamiltonian expectation estimate calculators.

This code will not be actively maintained and is not intended to be the subject of further development by its authors.

## Usage

### 1. Environment Setup

- The environment requirements are available in the nqs-qchem.yml file.

- Make sure your operating system meets the requirements for PyTorch 2.5.1 and CUDA 11.8.

- If setting up the environment through the .yml file does not work, then the primary dependencies are obtained as follows:

```
conda install python==3.9.18
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
conda install tensorboardX
conda install pytorch-model-summary
conda install yacs
pip install yet-another-retnet
pip install tangelo-gc
pip install --prefer-binary pyscf
```

### 2. Running the Program

To view a list of previously logged molecule names, without running the main program, run

```
python -m main --list_molecules
```

If a desired molecule name is not stored by the program, then running the program with the desired name and a corresponding pubchem ID will link the name and ID in the program's internal name storage. The list of orbital basis sets is available within the PySCF documentation. The program itself can be run by executing the following script:

```
./run.sh
```

The run script will adapt to the number of GPUs specified for use, but it does so in a naive way. The script presumes that the total number of GPUs used by the program equals the total number of system GPUs available on the current machine, and will call on all those GPUs to run the program. It is the user's responsibility to ensure these parameters are adequate, and to modify them if necessary (to run the program using multiple nodes, for instance).
Input configuration flags are generally recorded in .yaml files within the directory ./exp_configs/ and are called as needed in the run script. Some configurations are expected to be specified within the run script: hypothetically all configurations may be specified in the run script, which supersedes the .yaml file, but this is not the expected form of use.

### 3. Logging Outputs
All logged results and outputs produced by the program can be found under './logger/'. Each run of the program updates './logger/results.txt' (which is not automatically erased) with the best result obtained over the specified number of trials. Each run of the program generates its own output directory within './logger/' that stores a copy of the .yaml file containing the input configurations that were used (those not specified by the file are included in the name of the directory). A dictionary containing basic logging information for all trials is saved as 'result.npy', and tensorboard files containing identical information are saved as well. The model corresponding with the best score of all the trials is also saved here. It is possible to specify different save locations for all these data using existing input configurations.
Empty file.
119 changes: 119 additions & 0 deletions examples/neural_quantum_states/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
from yacs.config import CfgNode as CN
# yacs official github page https://github.com/rbgirshick/yacs

_C = CN()
''' Miscellaneous '''
_C.MISC = CN()
# Random seed
_C.MISC.RANDOM_SEED = 0
# Logger path
_C.MISC.DIR = ''
# Saved models path
_C.MISC.SAVE_DIR = ''
# Number of trials
_C.MISC.NUM_TRIALS = 0
# DDP seeds
_C.MISC.SAME_LOCAL_SEED = False

''' Training hyper-parameters '''
_C.TRAIN = CN()
# Learning rate
_C.TRAIN.LEARNING_RATE = 0.0
# Optimizer weight decay
_C.TRAIN.WEIGHT_DECAY = 0.0
# Training optimizer name
# Available choices: ['adam', 'sgd', 'adadelta', 'adamax', 'adagrad', 'nadam', 'radam', 'adamw']
_C.TRAIN.OPTIMIZER_NAME = ''
# Learning rate scheduler name
# Available choices: ['decay', 'cyclic', 'trap', 'const', 'cosine', 'cosine_warm']
_C.TRAIN.SCHEDULER_NAME = ''
# Training batch size
_C.TRAIN.BATCH_SIZE = 0
# Number of training epochs
_C.TRAIN.NUM_EPOCHS = 0
# How many iterations between recalculation of Hamiltonian energy
_C.TRAIN.RETEST_INTERVAL = 1
# Whether to use entropy regularization
_C.TRAIN.ANNEALING_COEFFICIENT = 0.0
# Entropy regularization constant schedule type
_C.TRAIN.ANNEALING_SCHEDULER = 'none'
# Largest number of samples that each GPU is expected to process at one time
_C.TRAIN.MINIBATCH_SIZE = 1

''' Model hyper-parameters '''
_C.MODEL = CN()
# The name of the model
# Available choices: ['made', 'transformer', 'retnet']
_C.MODEL.MODEL_NAME = ''
# The number of hidden layers in MADE/Phase MLP
_C.MODEL.MADE_DEPTH = 1
# Hidden layer size in MADE/Phase MLP
_C.MODEL.MADE_WIDTH = 64
# Embedding/Hidden State Dimension for Transformer/RetNet
_C.MODEL.EMBEDDING_DIM = 32
# Number of Attention/Retention Heads per Transformer/RetNet layer
_C.MODEL.ATTENTION_HEADS = 4
# Feedforward Dimension for Transformer/RetNet
_C.MODEL.FEEDFORWARD_DIM = 512
# Number of Transformer/RetNet layers
_C.MODEL.TRANSFORMER_LAYERS = 1
# Parameter std initialization
_C.MODEL.INIT_STD = 0.1
# Model temperature parameter
_C.MODEL.TEMPERATURE = 1.0

''' Data hyper-parameters '''
_C.DATA = CN()
# Minimum nonunique batch size for autoregressive sampling
_C.DATA.MIN_NUM_SAMPLES = 1e2
# Maximum nonunique batch size for autoregressive sampling
_C.DATA.MAX_NUM_SAMPLES = 1e12
# Molecule name
_C.DATA.MOLECULE = ''
# Pubchem molecular compound CID (only needed if name does not exist in shelf)
_C.DATA.MOLECULE_CID = 0
# Basis ['STO-3G', '3-21G', '6-31G', '6-311G*', '6-311+G*', '6-311++G**', '6-311++G(2df,2pd)', '6-311++G(3df,3pd)', 'cc-pVDZ', 'cc-pVDZ-DK', 'cc-pVTZ', 'cc-pVQZ', 'aug-cc-pCVQZ']
_C.DATA.BASIS = ''
# Prepare FCI result; not recommended for medium-to-large systems
_C.DATA.FCI = False
# Choice of Hamiltonian to use for training: ['adaptive_shadows', 'exact', 'sample']
_C.DATA.HAMILTONIAN_CHOICE = 'exact'
# Sample batch size for Hamiltonian sampling
_C.DATA.HAMILTONIAN_BATCH_SIZE = 10
# Number of unique samples in Hamiltonian sampling
_C.DATA.HAMILTONIAN_NUM_UNIQS = 500
# Probability of resampling estimated Hamiltonian
_C.DATA.HAMILTONIAN_RESET_PROB = 0.01
# Number of batches that the flipped input states are split into during local energy calculation
_C.DATA.HAMILTONIAN_FLIP_BATCHES = 1

''' Evaluation hyper-parameters '''
_C.EVAL = CN()
# Loading path of the saved model
_C.EVAL.MODEL_LOAD_PATH = ''
# Name of the results logger
_C.EVAL.RESULT_LOGGER_NAME = './results/results.txt'

''' DistributedDataParallel '''
_C.DDP = CN()
# Node number globally
_C.DDP.NODE_IDX = 0
# This needs to be explicitly passed in
_C.DDP.LOCAL_WORLD_SIZE = 1
# Total number of GPUs
_C.DDP.WORLD_SIZE = 1
# Master address for communication
_C.DDP.MASTER_ADDR = 'localhost'
# Master port for communication
_C.DDP.MASTER_PORT = 12355


def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for the project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()

# Alternatively, provide a way to import the defaults as
# a global singleton:
# cfg = _C # users can `from config import cfg`
54 changes: 54 additions & 0 deletions examples/neural_quantum_states/exp_configs/nqs.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@

MISC:
RANDOM_SEED: 667
DIR: ''
SAVE_DIR: ''
NUM_TRIALS: 1
SAME_LOCAL_SEED: 'True'

DDP:
NODE_IDX: -1
LOCAL_WORLD_SIZE: -1
WORLD_SIZE: -1
MASTER_ADDR: 'localhost'
MASTER_PORT: 12355

TRAIN:
OPTIMIZER_NAME: 'adamw'
SCHEDULER_NAME: 'cosine_warmup'
LEARNING_RATE: 0.0025
WEIGHT_DECAY: 0.05
NUM_EPOCHS: 100
RETEST_INTERVAL: 10
BATCH_SIZE: 2000
MINIBATCH_SIZE: 2000
ANNEALING_COEFFICIENT: 1.0
ANNEALING_SCHEDULER: 'quartic'

MODEL:
MODEL_NAME: ''
MADE_DEPTH: 2
MADE_WIDTH: 64
EMBEDDING_DIM: 16
ATTENTION_HEADS: 2
FEEDFORWARD_DIM: 64
TRANSFORMER_LAYERS: 1
INIT_STD: 0.1
TEMPERATURE: 1.0

DATA:
MIN_NUM_SAMPLES: 1e2
MAX_NUM_SAMPLES: 1e12
MOLECULE: 'H2'
MOLECULE_CID: 0
BASIS: 'sto-3g'
FCI: True
HAMILTONIAN_CHOICE: 'exact'
HAMILTONIAN_FLIP_BATCHES: 8
HAMILTONIAN_BATCH_SIZE: 10000
HAMILTONIAN_NUM_UNIQS: 1000
HAMILTONIAN_RESET_PROB: 0.01

EVAL:
MODEL_LOAD_PATH: ''
RESULT_LOGGER_NAME: './logger/results.txt'
149 changes: 149 additions & 0 deletions examples/neural_quantum_states/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
import os
import argparse
import shelve
import logging
import numpy as np
import torch.multiprocessing as mp

from config import get_cfg_defaults # local variable usage pattern
from src.util import prepare_dirs, set_seed, write_file, folder_name_generator, setup, cleanup
from src.training.train import train

def run_trials(rank: int, cfg: argparse.Namespace):
'''
Runs the train function for cfg.MISC.NUM_TRIALS times with identical input configurations (except for the random seed, which is altered).
Args:
rank: Identifying index of GPU running process
cfg: Input configurations
Returns:
None
'''
local_rank = rank
# set up configurations
directory = cfg.MISC.DIR
molecule_name = cfg.DATA.MOLECULE
num_trials = cfg.MISC.NUM_TRIALS
random_seed = cfg.MISC.RANDOM_SEED
result_logger_name = cfg.EVAL.RESULT_LOGGER_NAME
node_idx = cfg.DDP.NODE_IDX
local_world_size = cfg.DDP.LOCAL_WORLD_SIZE
world_size = cfg.DDP.WORLD_SIZE
global_rank = node_idx * local_world_size + local_rank
master_addr = cfg.DDP.MASTER_ADDR
master_port = cfg.DDP.MASTER_PORT
use_same_local_seed = cfg.MISC.SAME_LOCAL_SEED
logging.info(f"Running DDP on rank {global_rank}.")
if world_size > 1:
setup(global_rank, world_size, master_addr, master_port)
if global_rank == 0:
prepare_dirs(cfg)
best_score = float('inf')*np.ones(3)
avg_time_elapsed = 0.0
result_dic = {}
write_file(result_logger_name, f"=============== {directory.split('/')[-1]} ===============", global_rank)
current_model_path = os.path.join(cfg.MISC.SAVE_DIR, 'last_model.pth')
best_model_path = os.path.join(cfg.MISC.SAVE_DIR, 'best_model_pth')
for trial in range(num_trials):
seed = random_seed + trial * 1000
# set random seeds
set_seed(seed + (0 if use_same_local_seed else global_rank))
new_score, time_elapsed, dic = train(cfg, local_rank, global_rank)
new_score = np.array(new_score)
result_log = f"[{molecule_name}] Score {new_score}, Time elapsed {time_elapsed:.4f}"
write_file(result_logger_name, f"Trial - {trial+1}", global_rank)
write_file(result_logger_name, result_log, global_rank)
if new_score[0] < best_score[0]:
best_score = new_score
if global_rank == 0:
os.system(f'mv "{current_model_path}" "{best_model_path}"')
avg_time_elapsed += time_elapsed / num_trials
if dic is not None:
for key in dic:
if key in result_dic:
result_dic[key] = np.concatenate((result_dic[key], np.expand_dims(dic[key], axis=0)), axis=0)
else:
result_dic[key] = np.expand_dims(dic[key], axis=0)
result_log = f"[{directory.split('/')[-1]}][{molecule_name}] Best Score {best_score}, Time elapsed {avg_time_elapsed:.4f}, over {num_trials} trials"
write_file(result_logger_name, result_log, global_rank)
if global_rank == 0:
np.save(os.path.join(directory, 'result.npy'), result_dic)
if world_size > 1:
cleanup()


def main(cfg: argparse.Namespace):
'''
Main function for NQS program
Args:
cfg: input configurations
Returns:
None
'''
world_size = cfg.DDP.WORLD_SIZE
local_world_size = cfg.DDP.LOCAL_WORLD_SIZE
if world_size > 1:
mp.spawn(run_trials, args=(cfg,), nprocs=local_world_size, join=True)
else:
run_trials(0, cfg)
logging.info('--------------- Finished ---------------')


if __name__ == '__main__':
# command line arguments
parser = argparse.ArgumentParser(description="Command-Line Options")
parser.add_argument(
"--config_file",
default="",
metavar="FILE",
help="Path to the yaml config file",
type=str,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument(
'--list_molecules',
action='store_true',
default=False,
help='List saved molecules (instead of running program)',
)
args = parser.parse_args()
# Remainder of program does not run if program is asked to list molecules
if args.list_molecules:
molecule_list = 'PubChem IDs stored by program:'
with shelve.open('./src/data/pubchem_IDs/ID_data') as pubchem_ids:
for name, id in pubchem_ids.items():
molecule_list+=('\n{}: {}'.format(name, id))
print(molecule_list+'\nStored names can be used as input arguments to access corresponding IDs.')
else:
# configurations
cfg = get_cfg_defaults()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# set up directories (cfg.MISC.DIR)
log_folder_name = folder_name_generator(cfg, args.opts)
if cfg.MISC.DIR == '':
cfg.MISC.DIR = './logger/{}'.format(log_folder_name)
if cfg.MISC.SAVE_DIR == '':
cfg.MISC.SAVE_DIR = './logger/{}'.format(log_folder_name)
os.makedirs(cfg.MISC.DIR, exist_ok=True)
os.makedirs(cfg.MISC.SAVE_DIR, exist_ok=True)
os.system(f'cp "{args.config_file}" "{cfg.MISC.DIR}"')
# freeze the configurations
cfg.freeze()
# set logger
logging.root.handlers = []
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler(os.path.join(cfg.MISC.DIR, 'logging.log')),
logging.StreamHandler()
]
)
# run program
main(cfg)

Loading
Loading