-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
340 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,340 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"accelerator": "GPU", | ||
"colab": { | ||
"name": "forecasting_with_lstm.ipynb", | ||
"provenance": [], | ||
"collapsed_sections": [], | ||
"toc_visible": true, | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/sanikamal/time-series-analysis-and-forecasting-atoz/blob/master/forecasting_with_lstm.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "E5VI4y76i14x" | ||
}, | ||
"source": [ | ||
"# Forecasting with an LSTM" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "vidayERjaO5q" | ||
}, | ||
"source": [ | ||
"## Setup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "WQ5AjH_KY74O", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"# !pip install --upgrade tensorflow" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "gqWabzlJ63nL", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import tensorflow as tf\n", | ||
"\n", | ||
"keras = tf.keras" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "cg1hfKCPldZG", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"def plot_series(time, series, format=\"-\", start=0, end=None, label=None):\n", | ||
" plt.plot(time[start:end], series[start:end], format, label=label)\n", | ||
" plt.xlabel(\"Time\")\n", | ||
" plt.ylabel(\"Value\")\n", | ||
" if label:\n", | ||
" plt.legend(fontsize=14)\n", | ||
" plt.grid(True)\n", | ||
" \n", | ||
"def trend(time, slope=0):\n", | ||
" return slope * time\n", | ||
" \n", | ||
" \n", | ||
"def seasonal_pattern(season_time):\n", | ||
" \"\"\"Just an arbitrary pattern, you can change it if you wish\"\"\"\n", | ||
" return np.where(season_time < 0.4,\n", | ||
" np.cos(season_time * 2 * np.pi),\n", | ||
" 1 / np.exp(3 * season_time))\n", | ||
"\n", | ||
" \n", | ||
"def seasonality(time, period, amplitude=1, phase=0):\n", | ||
" \"\"\"Repeats the same pattern at each period\"\"\"\n", | ||
" season_time = ((time + phase) % period) / period\n", | ||
" return amplitude * seasonal_pattern(season_time)\n", | ||
" \n", | ||
" \n", | ||
"def white_noise(time, noise_level=1, seed=None):\n", | ||
" rnd = np.random.RandomState(seed)\n", | ||
" return rnd.randn(len(time)) * noise_level\n", | ||
" \n", | ||
"\n", | ||
"def sequential_window_dataset(series, window_size):\n", | ||
" series = tf.expand_dims(series, axis=-1)\n", | ||
" ds = tf.data.Dataset.from_tensor_slices(series)\n", | ||
" ds = ds.window(window_size + 1, shift=window_size, drop_remainder=True)\n", | ||
" ds = ds.flat_map(lambda window: window.batch(window_size + 1))\n", | ||
" ds = ds.map(lambda window: (window[:-1], window[1:]))\n", | ||
" return ds.batch(1).prefetch(1)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "iL2DDjV3lel6", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"time = np.arange(4 * 365 + 1)\n", | ||
"\n", | ||
"slope = 0.05\n", | ||
"baseline = 10\n", | ||
"amplitude = 40\n", | ||
"series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude)\n", | ||
"\n", | ||
"noise_level = 5\n", | ||
"noise = white_noise(time, noise_level, seed=42)\n", | ||
"\n", | ||
"series += noise\n", | ||
"\n", | ||
"plt.figure(figsize=(10, 6))\n", | ||
"plot_series(time, series)\n", | ||
"plt.show()" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "Zmp1JXKxk9Vb", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"split_time = 1000\n", | ||
"time_train = time[:split_time]\n", | ||
"x_train = series[:split_time]\n", | ||
"time_valid = time[split_time:]\n", | ||
"x_valid = series[split_time:]" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "9fPenJpTtuDE", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"class ResetStatesCallback(keras.callbacks.Callback):\n", | ||
" def on_epoch_begin(self, epoch, logs):\n", | ||
" self.model.reset_states()" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "EPjK0l9P8OJM" | ||
}, | ||
"source": [ | ||
"## LSTM RNN Forecasting" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "cSoUmW-x8OJN", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"keras.backend.clear_session()\n", | ||
"tf.random.set_seed(42)\n", | ||
"np.random.seed(42)\n", | ||
"\n", | ||
"window_size = 30\n", | ||
"train_set = sequential_window_dataset(x_train, window_size)\n", | ||
"\n", | ||
"model = keras.models.Sequential([\n", | ||
" keras.layers.LSTM(100, return_sequences=True, stateful=True,\n", | ||
" batch_input_shape=[1, None, 1]),\n", | ||
" keras.layers.LSTM(100, return_sequences=True, stateful=True),\n", | ||
" keras.layers.Dense(1),\n", | ||
" keras.layers.Lambda(lambda x: x * 200.0)\n", | ||
"])\n", | ||
"lr_schedule = keras.callbacks.LearningRateScheduler(\n", | ||
" lambda epoch: 1e-8 * 10**(epoch / 20))\n", | ||
"reset_states = ResetStatesCallback()\n", | ||
"optimizer = keras.optimizers.SGD(lr=1e-8, momentum=0.9)\n", | ||
"model.compile(loss=keras.losses.Huber(),\n", | ||
" optimizer=optimizer,\n", | ||
" metrics=[\"mae\"])\n", | ||
"history = model.fit(train_set, epochs=100,\n", | ||
" callbacks=[lr_schedule, reset_states])" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "KA0GM9sQ8OJO", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"plt.semilogx(history.history[\"lr\"], history.history[\"loss\"])\n", | ||
"plt.axis([1e-8, 1e-4, 0, 30])" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "hiHR5pPL8OJP", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"keras.backend.clear_session()\n", | ||
"tf.random.set_seed(42)\n", | ||
"np.random.seed(42)\n", | ||
"\n", | ||
"window_size = 30\n", | ||
"train_set = sequential_window_dataset(x_train, window_size)\n", | ||
"valid_set = sequential_window_dataset(x_valid, window_size)\n", | ||
"\n", | ||
"model = keras.models.Sequential([\n", | ||
" keras.layers.LSTM(100, return_sequences=True, stateful=True,\n", | ||
" batch_input_shape=[1, None, 1]),\n", | ||
" keras.layers.LSTM(100, return_sequences=True, stateful=True),\n", | ||
" keras.layers.Dense(1),\n", | ||
" keras.layers.Lambda(lambda x: x * 200.0)\n", | ||
"])\n", | ||
"optimizer = keras.optimizers.SGD(lr=5e-7, momentum=0.9)\n", | ||
"model.compile(loss=keras.losses.Huber(),\n", | ||
" optimizer=optimizer,\n", | ||
" metrics=[\"mae\"])\n", | ||
"reset_states = ResetStatesCallback()\n", | ||
"model_checkpoint = keras.callbacks.ModelCheckpoint(\n", | ||
" \"my_checkpoint.h5\", save_best_only=True)\n", | ||
"early_stopping = keras.callbacks.EarlyStopping(patience=50)\n", | ||
"model.fit(train_set, epochs=500,\n", | ||
" validation_data=valid_set,\n", | ||
" callbacks=[early_stopping, model_checkpoint, reset_states])" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "nPeZUfQy8OJQ", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"model = keras.models.load_model(\"my_checkpoint.h5\")" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "4tFrq5uW8OJR", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"rnn_forecast = model.predict(series[np.newaxis, :, np.newaxis])\n", | ||
"rnn_forecast = rnn_forecast[0, split_time - 1:-1, 0]" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "ZfaR6nqj8OJT", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"plt.figure(figsize=(10, 6))\n", | ||
"plot_series(time_valid, x_valid)\n", | ||
"plot_series(time_valid, rnn_forecast)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "Wgf2u2Tp8OJV", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"keras.metrics.mean_absolute_error(x_valid, rnn_forecast).numpy()" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
} | ||
] | ||
} |