You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am trying to run SCTransform on a large (~250k cell dataset) to join our spatial transcriptomic with single-cell data, and it crashes during the second step (getting residuals) if I increase the memory usage accepted to 10Go.
Any advice?
first, I tried to run FindTransferAnchors, but I had an error as I don't have SCTModel.list
`anchors <- FindTransferAnchors(reference = adipose.raw, query = HFD8,
normalization.method = "SCT")
Error in slot(object = reference[[reference.assay]], name = "SCTModel.list") :
no slot of name "SCTModel.list" for this object of class "Assay5"`
So I try to run SCTransform, but I don't have enough allocated memory
> options(future.globals.maxSize = 3000 * 1024^2)
> adipose.raw <- SCTransform(adipose.raw, ncells = 5000, verbose = TRUE)
Running SCTransform on assay: RNA
Running SCTransform on layer: counts
vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
Variance stabilizing transformation of count matrix of size 26950 by 238465
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 5000 cells
Error in getGlobalsAndPackages(expr, envir = envir, globals = globals) :
The total size of the 19 globals exported for future expression (‘FUN()’) is 9.24 GiB.. This exceeds the maximum allowed size of 2.93 GiB (option 'future.globals.maxSize'). The three largest globals are ‘FUN’ (9.22 GiB of class ‘function’), ‘umi_bin’ (19.30 MiB of class ‘numeric’) and ‘data_step1’ (1.91 MiB of class ‘list’)```
So I extended to 10Go as I have 32Go on my computer, but I met another error message related to the memory and I don't know what to do now.
options(future.globals.maxSize = 10000 * 1024^2)
adipose.raw <- SCTransform(adipose.raw, ncells = 5000, verbose = TRUE)
Running SCTransform on assay: RNA
Running SCTransform on layer: counts
vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
Variance stabilizing transformation of count matrix of size 26950 by 238465
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 5000 cells
Found 218 outliers - those will be ignored in fitting/regularization step
Second step: Get residuals using fitted parameters for 26950 genes
Error: vector memory limit of 100.0 Gb reached, see mem.maxVSize()
Any advice?
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-apple-darwin20
Running under: macOS Sequoia 15.3.1
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
I am trying to run SCTransform on a large (~250k cell dataset) to join our spatial transcriptomic with single-cell data, and it crashes during the second step (getting residuals) if I increase the memory usage accepted to 10Go.
Any advice?
first, I tried to run FindTransferAnchors, but I had an error as I don't have SCTModel.list
`anchors <- FindTransferAnchors(reference = adipose.raw, query = HFD8,
Error in slot(object = reference[[reference.assay]], name = "SCTModel.list") :
no slot of name "SCTModel.list" for this object of class "Assay5"`
So I try to run SCTransform, but I don't have enough allocated memory
Second step: Get residuals using fitted parameters for 26950 genes
Error: vector memory limit of 100.0 Gb reached, see mem.maxVSize()
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats4 grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] glmGamPoi_1.16.0 reshape2_1.4.4 future_1.34.0
[4] shiny_1.10.0 monocle3_1.3.7 SingleCellExperiment_1.26.0
[7] SummarizedExperiment_1.34.0 GenomicRanges_1.56.2 GenomeInfoDb_1.40.1
[10] IRanges_2.38.1 S4Vectors_0.42.1 MatrixGenerics_1.16.0
[13] matrixStats_1.5.0 Biobase_2.64.0 BiocGenerics_0.50.0
[16] lubridate_1.9.4 forcats_1.0.0 purrr_1.0.4
[19] readr_2.1.5 tidyr_1.3.1 tibble_3.2.1
[22] tidyverse_2.0.0 RColorBrewer_1.1-3 stringr_1.5.1
[25] ggthemes_5.1.0 ggbeeswarm_0.7.2 plotly_4.10.4
[28] destiny_3.18.0 SeuratWrappers_0.3.2 wesanderson_0.3.7
[31] ggsci_3.2.0 patchwork_1.3.0 harmony_1.2.3
[34] Rcpp_1.0.14 Matrix_1.7-2 Seurat_5.2.1
[37] SeuratObject_5.0.2 sp_2.2-0 ggplot2_3.5.1
[40] ggridges_0.5.6 viridis_0.6.5 viridisLite_0.4.2
[43] data.table_1.16.4 dplyr_1.1.4
loaded via a namespace (and not attached):
[1] spatstat.sparse_3.1-0 httr_1.4.7 tools_4.4.2
[4] sctransform_0.4.1 R6_2.6.1 lazyeval_0.2.2
[7] uwot_0.2.2 withr_3.0.2 gridExtra_2.3
[10] progressr_0.15.1 textshaping_1.0.0 cli_3.6.4
[13] spatstat.explore_3.3-4 fastDummies_1.7.5 isoband_0.2.7
[16] sass_0.4.9 labeling_0.4.3 robustbase_0.99-4-1
[19] spatstat.data_3.1-4 proxy_0.4-27 pbapply_1.7-2
[22] systemfonts_1.2.1 R.utils_2.12.3 parallelly_1.42.0
[25] Rfast2_0.1.5.2 limma_3.60.6 TTR_0.24.4
[28] rstudioapi_0.17.1 generics_0.1.3 crosstalk_1.2.1
[31] ica_1.0-3 spatstat.random_3.3-2 car_3.1-3
[34] abind_1.4-8 R.methodsS3_1.8.2 lifecycle_1.0.4
[37] yaml_2.3.10 scatterplot3d_0.3-44 carData_3.0-5
[40] SparseArray_1.4.8 Rtsne_0.17 promises_1.3.2
[43] crayon_1.5.3 miniUI_0.1.1.1 lattice_0.22-6
[46] cowplot_1.1.3 knitr_1.49 pillar_1.10.1
[49] boot_1.3-31 future.apply_1.11.3 codetools_0.2-20
[52] Rnanoflann_0.0.3 glue_1.8.0 leidenbase_0.1.32
[55] spatstat.univar_3.1-1 pcaMethods_1.96.0 remotes_2.5.0
[58] vcd_1.4-13 Rdpack_2.6.2 vctrs_0.6.5
[61] png_0.1-8 spam_2.11-1 gtable_0.3.6
[64] assertthat_0.2.1 cachem_1.1.0 xfun_0.50
[67] rbibutils_2.3 S4Arrays_1.4.1 mime_0.12
[70] Rfast_2.1.4 RcppEigen_0.3.4.0.2 reformulas_0.4.0
[73] survival_3.8-3 statmod_1.5.0 fitdistrplus_1.2-2
[76] ROCR_1.0-11 nlme_3.1-167 xts_0.14.1
[79] bit64_4.6.0-1 RcppAnnoy_0.0.22 bslib_0.9.0
[82] irlba_2.3.5.1 vipor_0.4.7 KernSmooth_2.23-26
[85] colorspace_2.1-1 nnet_7.3-20 ggrastr_1.0.2
[88] tidyselect_1.2.1 smoother_1.3 processx_3.8.5
[91] bit_4.5.0.1 compiler_4.4.2 curl_6.2.0
[94] hdf5r_1.3.12 desc_1.4.3 DelayedArray_0.30.1
[97] scales_1.3.0 DEoptimR_1.1-3-1 lmtest_0.9-40
[100] hexbin_1.28.5 callr_3.7.6 digest_0.6.37
[103] goftest_1.2-3 presto_1.0.0 spatstat.utils_3.1-2
[106] minqa_1.2.8 rmarkdown_2.29 XVector_0.44.0
[109] htmltools_0.5.8.1 pkgconfig_2.0.3 lme4_1.1-36
[112] sparseMatrixStats_1.16.0 fastmap_1.2.0 rlang_1.1.5
[115] htmlwidgets_1.6.4 UCSC.utils_1.0.0 DelayedMatrixStats_1.26.0
[118] jquerylib_0.1.4 farver_2.1.2 zoo_1.8-12
[121] jsonlite_1.8.9 R.oo_1.27.0 magrittr_2.0.3
[124] Formula_1.2-5 GenomeInfoDbData_1.2.12 dotCall64_1.2
[127] munsell_0.5.1 reticulate_1.40.0 RcppZiggurat_0.1.6
[130] stringi_1.8.4 zlibbioc_1.50.0 MASS_7.3-64
[133] plyr_1.8.9 pkgbuild_1.4.6 parallel_4.4.2
[136] listenv_0.9.1 ggrepel_0.9.6 deldir_2.0-4
[139] splines_4.4.2 tensor_1.5 hms_1.1.3
[142] ps_1.8.1 igraph_2.1.4 ranger_0.17.0
[145] spatstat.geom_3.3-5 RcppHNSW_0.6.0 evaluate_1.0.3
[148] RcppParallel_5.1.10 BiocManager_1.30.25 laeken_0.5.3
[151] nloptr_2.1.1 tzdb_0.4.0 httpuv_1.6.15
[154] VIM_6.2.2 RANN_2.6.2 polyclip_1.10-7
[157] knn.covertree_1.0 scattermore_1.2 rsvd_1.0.5
[160] xtable_1.8-4 e1071_1.7-16 RSpectra_0.16-2
[163] later_1.4.1 ragg_1.3.3 class_7.3-23
[166] memoise_2.0.1 beeswarm_0.4.0 cluster_2.1.8
[169] ggplot.multistats_1.0.1 timechange_0.3.0 globals_0.16.3
The text was updated successfully, but these errors were encountered: