Skip to content

Find zeros of a function using the Newton-Raphson method

Notifications You must be signed in to change notification settings

scijs/newton-raphson-method

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

newton-raphson-method

Find zeros of a function using Newton's Method

Build Status npm version Dependency Status js-semistandard-style

Introduction

The Newton-Raphson method uses the tangent of a curve to iteratively approximate a zero of a function, f(x). This yields the update:

x_{i + 1} = x_i -\frac{f(x_i)}{f'(x_i)}.

Example

Consider the zero of (x + 2) * (x - 1) at x = 1:

var nr = require('newton-raphson-method');

function f (x) { return (x - 1) * (x + 2); }
function fp (x) { return (x - 1) + (x + 2); }

// Using the derivative:
nr(f, fp, 2)
// => 1.0000000000000000 (6 iterations)

// Using a numerical derivative:
nr(f, 2)
// => 1.0000000000000000 (6 iterations)

Installation

$ npm install newton-raphson-method

API

require('newton-raphson-method')(f[, fp], x0[, options])

Given a real-valued function of one variable, iteratively improves and returns a guess of a zero.

Parameters:

  • f: The numerical function of one variable of which to compute the zero.
  • fp (optional): The first derivative of f. If not provided, is computed numerically using a fourth order central difference with step size h.
  • x0: A number representing the intial guess of the zero.
  • options (optional): An object permitting the following options:
    • tolerance (default: 1e-7): The tolerance by which convergence is measured. Convergence is met if |x[n+1] - x[n]| <= tolerance * |x[n+1]|.
    • epsilon (default: 2.220446049250313e-16 (double-precision epsilon)): A threshold against which the first derivative is tested. Algorithm fails if |y'| < epsilon * |y|.
    • maxIterations (default: 20): Maximum permitted iterations.
    • h (default: 1e-4): Step size for numerical differentiation.
    • verbose (default: false): Output additional information about guesses, convergence, and failure.

Returns: If convergence is achieved, returns an approximation of the zero. If the algorithm fails, returns false.

See Also

  • modified-newton-raphson: A simple modification of Newton-Raphson that may exhibit improved convergence.
  • newton-raphson: A similar and lovely implementation that differs (only?) in requiring a first derivative.

License

© 2016 Scijs Authors. MIT License.

Authors

Ricky Reusser

About

Find zeros of a function using the Newton-Raphson method

Resources

Stars

Watchers

Forks

Packages

No packages published