Releases
0.2.1
#79 : update to onnxruntime v1.16.0
#77 : helpers to benchmark a model
#74 : add a function to enumerate all intermediate results with onnxruntime
#71 , #72 , #73 : add function to analyse a profile produce by onnxruntime
#68 , #69 , #70 : add CPU implementation for CustomGemmFloat8
#67 : add a function to extract a subgraph of a model
#59 , #60 , #61 , #62 , #63 , #65 ,
#66 , #68 , #69 , #70 :
add local functions to quantize into float 8, float 16
#57 : add C implementation for DynamicQuantizeLinear (for experimentation)
#56 : add C implementation to cast a float into float 8
#55 , #58 : add basic functionality to transform a graph, starts with basic quantization
#51 : fix optmized TreeEnsembleRegressor and adds TreeEnsembleClassifier as custom ops
#50 : add command line store to store intermediate outputs
#49 : add option to save intermediate results in CReferenceEvaluator
#45 : add option cuda-link to setup.py to specify how to link with CUDA library
#41 : implements a custom kernel for RandomForestRegressor easier to optimize
#34 : update to onnxruntime v1.15.1
#31 : implement a custom CUDA kernel (gemm)
#32 : update to onnxruntime v1.15.0
#27 : add a custom kernel with parameters to onnxruntime
#26 : add a custom kernel to onnxruntime
#24 : use Eigen to implement Conv operator
#23 : make pip wheel . work
#22 : rename cmake into _cmake to avoid warnings related to cmake package
#19 : minimal settings to use onnxruntime
#14 : minimal setting to use CUDA
#8 : support for C++ unit test
You can’t perform that action at this time.