Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add point source with far-field directivity of circular piston #156

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 65 additions & 0 deletions sfs/fd/source.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,71 @@ def point_dipole(omega, x0, n0, grid, *, c=None):
_np.power(r, 2) * _np.exp(-1j * k * r)


def point_circular_piston(omega, x0, n0, grid, R, *, c=None):
r"""Point source with circular piston far-field directivity.

Parameters
----------
omega : float
Frequency of source.
x0 : (3,) array_like
Position of source.
n0 : (3,) array_like
Normal vector (direction) of the circular piston.
grid : triple of array_like
The grid that is used for the sound field calculations.
See `sfs.util.xyz_grid()`.
R : float
Radius of circular piston.
c : float, optional
Speed of sound.

Returns
-------
numpy.ndarray
Sound pressure at positions given by *grid*.

Notes
-----
.. math::

G(\x-\x_0,\w) = \frac{1}{2\pi}
\frac{J_1(\wc R \sin(\Theta))}{\wc R \sin(\Theta)}
\frac{\e{-\i\wc|\x-\x_0|}}{|\x-\x_0|}
with :math:`\Theta` more conveniently defined by its cosine
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sfs/fd/source.py:docstring of sfs.fd.source.point_circular_piston:20: WARNING: Explicit markup ends without a blank line; unexpected unindent.


.. math::

\cos(\Theta) =
\frac{\langle \mathbf{x} - \mathbf{x}_0 | \mathbf{n}_0 \rangle}
{|\mathbf{x} - \mathbf{x}_0|}

Examples
--------
.. plot::
:context: close-figs

n0 = 0, -1, 0
R = 1.0
p = sfs.fd.source.point_circular_piston(omega, x0, n0, grid, R)
sfs.plot2d.amplitude(p * normalization_point, grid)
plt.title("Circular Piston Radiator at {} m".format(x0))

"""
k = _util.wavenumber(omega, c)
x0 = _util.asarray_1d(x0)
n0 = _util.asarray_1d(n0)
grid = _util.as_xyz_components(grid)

offset = grid - x0
r = _np.linalg.norm(offset)
cosphi = _np.inner(offset, n0) / r
sinphi = _np.sqrt(1 - _np.power(cosphi, 2))

return 1 / (2 * _np.pi) * _np.exp(-1j * k * r) / r * \
_util.jinc(k * R * sinphi)


def point_modal(omega, x0, grid, L, *, N=None, deltan=0, c=None):
"""Point source in a rectangular room using a modal room model.

Expand Down
25 changes: 24 additions & 1 deletion sfs/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,8 @@
import collections
import numpy as np
from numpy.core.umath_tests import inner1d
from scipy.special import spherical_jn, spherical_yn
from numpy.core.numeric import where
from scipy.special import spherical_jn, spherical_yn, j1
from . import default


Expand Down Expand Up @@ -555,6 +556,28 @@ def spherical_hn2(n, z):
return spherical_jn(n, z) - 1j * spherical_yn(n, z)


def jinc(x):
r"""Jinc function (circular counterpart of Sinc function).

.. math::

\mathrm{Jinc}(x) = \frac{J_1(x)}{x}

where :math:`J_1(\cdot)` is the Bessel function of first order,
and :math:`x` its real-value argument. For reference implementation, see
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sinc.html.

Parameters
----------
x : array_like
Argument of the Jinc function.

"""
x = np.asanyarray(x)
y = where(x == 0, 1.0e-20, x)
return j1(y)/y


def source_selection_plane(n0, n):
"""Secondary source selection for a plane wave.

Expand Down