Skip to content

Commit

Permalink
Add OLMo model (#1676)
Browse files Browse the repository at this point in the history
  • Loading branch information
janimo authored Oct 16, 2024
1 parent b6b4094 commit a5114b6
Show file tree
Hide file tree
Showing 2 changed files with 357 additions and 1 deletion.
352 changes: 352 additions & 0 deletions python/sglang/srt/models/olmo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,352 @@
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

# Adapted from
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/olmo.py#L1
"""Inference-only OLMo model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple

import torch
from torch import nn
from transformers import OlmoConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader

from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.forward_batch_info import ForwardBatch


class OlmoAttention(nn.Module):
"""
This is the attention block where the output is computed as
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""

def __init__(
self,
config: OlmoConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads

assert self.hidden_size % self.total_num_heads == 0
assert self.total_num_heads % tensor_model_parallel_world_size == 0

self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.clip_qkv = config.clip_qkv

# Attention input projection. Projects x -> (q, k, v)
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
bias=config.attention_bias,
)

# Rotary embeddings.
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
)
self.scaling = self.head_dim**-0.5
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_heads,
layer_id=layer_id,
)

# Attention output projection.
self.o_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=config.attention_bias,
)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output


class OlmoMLP(nn.Module):
"""
This is the MLP block where the output is computed as
``MLP(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""

def __init__(
self,
config: OlmoConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size

# Feed-forward input projection.
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)

# Activation function.
self.act_fn = SiluAndMul()

# Feed-forward output projection.
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
)

def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x


class OlmoDecoderLayer(nn.Module):
"""
This is a typical transformer block where the output is
computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""

def __init__(
self,
config: OlmoConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
# Attention block.
self.self_attn = OlmoAttention(config, layer_id, quant_config)

# MLP block.
self.mlp = OlmoMLP(config, quant_config)

# LayerNorm
self.input_layernorm = nn.LayerNorm(
config.hidden_size, elementwise_affine=False, bias=False
)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size, elementwise_affine=False, bias=False
)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Attention block.
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(positions, hidden_states, forward_batch)
hidden_states = hidden_states + residual

# MLP block.
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states


class OlmoModel(nn.Module):

def __init__(
self, config: OlmoConfig, quant_config: Optional[QuantizationConfig] = None
):
super().__init__()
self.config = config

self.embed_tokens = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.layers = nn.ModuleList(
[
OlmoDecoderLayer(config, layer_idx, quant_config)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=False, bias=False
)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
"""
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)

if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds

# Apply blocks one-by-one.
for layer_idx, decoder_layer in enumerate(self.layers):
# shape: (batch_size, seq_len, d_model)
hidden_states = decoder_layer(
positions,
hidden_states,
forward_batch,
)

# Apply final layer norm.
# shape: (batch_size, seq_len or 1, d_model)
hidden_states = self.norm(hidden_states)
return hidden_states


class OlmoForCausalLM(nn.Module):
"""
Extremely barebones HF model wrapper.
"""

def __init__(
self,
config: OlmoConfig,
cache_config=None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.model = OlmoModel(config, quant_config)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(config)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
forward_batch=forward_batch,
input_embeds=input_embeds,
)
return self.logits_processor(
input_ids, hidden_states, self.lm_head.weight, forward_batch
)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
# With tie_word_embeddings, we can skip lm_head.weight
# The weight might appear unnecessarily in the files if the model is
# processed with quantization, LoRA, fine-tuning, etc.
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)


EntryClass = OlmoForCausalLM
6 changes: 5 additions & 1 deletion test/srt/models/test_generation_models.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ class ModelCase:
ModelCase("Qwen/Qwen2-1.5B"),
ModelCase("Qwen/Qwen2.5-14B-Instruct"),
ModelCase("HuggingFaceTB/SmolLM-135M-Instruct"),
ModelCase("allenai/OLMo-1B-0724-hf", decode_tolerance=8e-2),
]

TORCH_DTYPES = [torch.float16]
Expand Down Expand Up @@ -153,7 +154,10 @@ def test_others(self):

# Skip long prompts for models that does not have a long context
prompts = DEFAULT_PROMPTS
if model_case.model_path in ["HuggingFaceTB/SmolLM-135M-Instruct"]:
if model_case.model_path in [
"HuggingFaceTB/SmolLM-135M-Instruct",
"allenai/OLMo-1B-0724-hf",
]:
prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

# Assert the logits and output strs are close
Expand Down

0 comments on commit a5114b6

Please sign in to comment.