Machine Learning and Deep Learning Models from Scratch.
This Library allows users to create the following models:
- Feed-Forward Neural Networks
- Convolution Neural Networks
- Linear Regression
- Logistic Regression
Without having to write any backpropagation code.
To install the Networks Library
pip install networks
No Params
No Params
No Params
No Params
batch_params={
'mode':'train'/'test',
'momentum':0.9,
'eps':1e-8
}
batch_params={
'mode':'train'/'test',
'momentum':0.9,
'eps':1e-8
}
pooling_params={
'pooling_height':2,
'pooling_width':2,
'pooling_stride_height':2,
'pooling_stride_width':2
}
num_kernels=64,
kernel_h=3,
kernel_w=3,
convolution_params={
'stride':1
}
padding_h=2, padding_w=2
No params
No params
No params
No params
affine_out = 64
No params
from networks.network import network
model = network(input_shape=(64,1,50,50),initialization="xavier2",
update_params={
'alpha':1e-3,
'method':'adam',
'epoch':100,
'reg':0.01,
'reg_type':'L2',
'offset':1e-7
})
model.add("padding",padding_h=3,padding_w=3)
model.add("convolution",num_kernels=64,kernel_h=3,kernel_w=3,
convolution_params:{
'stride':1
})
model.add("relu")
model.add("pooling",pooling_params={
"pooling_height":2,
"pooling_width":2,
"pooling_stride_height":2,
'pooling_stide_width':2
})
model.add("batch_normalization",
batch_params={'mode':'train'/'test','momentum':0.9,'eps':1e-8})
model.add("spatial_batch",
batch_params={'mode':'train'/'test','momentum':0.9,'eps':1e-8})
model.add("flatten")
model.add("affine",affine_out=128)
model.add("softmax")
model.add("svm")
model.add("mse")
model.add("cross_entropy")
model.save("model.json")
model = network.load("model.json")
model.train(X,y)
accuracy,loss = model.test(validX,validY)
predictions = model.predict(X)