Skip to content

Commit

Permalink
Merge pull request #158 from siapy/fix
Browse files Browse the repository at this point in the history
Fix
  • Loading branch information
janezlapajne authored Sep 18, 2024
2 parents bdacaf8 + b3e559f commit 8a398be
Show file tree
Hide file tree
Showing 10 changed files with 71 additions and 22 deletions.
2 changes: 2 additions & 0 deletions docs/api/core/exceptions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@

::: siapy.core.exceptions
1 change: 1 addition & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ nav:
- API Documentation:
- Core:
- Configs: api/core/configs.md
- Exceptions: api/core/exceptions.md
- Logger: api/core/logger.md
- Types: api/core/types.md
- Datasets:
Expand Down
2 changes: 1 addition & 1 deletion siapy/core/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

SpectralType = sp.io.envi.BilFile | sp.io.envi.BipFile | sp.io.envi.BsqFile
ImageType = SpectralImage | np.ndarray | Image
ImageSizeType = int | tuple[int, int]
ImageSizeType = int | tuple[int, ...]
ImageDataType = (
np.uint8
| np.int16
Expand Down
6 changes: 4 additions & 2 deletions siapy/entities/images.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Iterable, Iterator
from typing import TYPE_CHECKING, Any, Iterable, Iterator, Sequence

import numpy as np
import spectral as sp
Expand Down Expand Up @@ -265,7 +265,9 @@ def to_subarray(self, pixels: "Pixels") -> np.ndarray:
image_arr_area[v_norm, u_norm, :] = image_arr[pixels.v(), pixels.u(), :]
return image_arr_area

def mean(self, axis: int | tuple[int] | None = None) -> float | np.ndarray:
def mean(
self, axis: int | tuple[int, ...] | Sequence[int] | None = None
) -> float | np.ndarray:
image_arr = self.to_numpy()
return np.nanmean(image_arr, axis=axis)

Expand Down
3 changes: 2 additions & 1 deletion siapy/entities/pixels.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from dataclasses import dataclass
from pathlib import Path
from typing import Annotated, ClassVar, Iterable, NamedTuple
from typing import Annotated, ClassVar, Iterable, NamedTuple, Sequence

import numpy as np
import pandas as pd
Expand Down Expand Up @@ -32,6 +32,7 @@ def from_iterable(
Annotated[int, "u coordinate on the image"],
Annotated[int, "v coordinate on the image"],
]
| Sequence[int]
],
) -> "Pixels":
df = pd.DataFrame(iterable, columns=[Pixels.coords.U, Pixels.coords.V])
Expand Down
20 changes: 18 additions & 2 deletions siapy/features/features.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,15 @@ def __init__(
feateng_steps: int = 2,
featsel_runs: int = 5,
max_gb: int | None = None,
transformations: list | tuple = ("1/", "exp", "log", "abs", "sqrt", "^2", "^3"),
transformations: list[str] | tuple[str, ...] = (
"1/",
"exp",
"log",
"abs",
"sqrt",
"^2",
"^3",
),
apply_pi_theorem: bool = True,
always_return_numpy: bool = False,
n_jobs: int = 1,
Expand Down Expand Up @@ -78,7 +86,15 @@ def __init__(
feateng_steps: int = 2,
featsel_runs: int = 5,
max_gb: int | None = None,
transformations: list | tuple = ("1/", "exp", "log", "abs", "sqrt", "^2", "^3"),
transformations: list[str] | tuple[str, ...] = (
"1/",
"exp",
"log",
"abs",
"sqrt",
"^2",
"^3",
),
apply_pi_theorem: bool = True,
always_return_numpy: bool = False,
n_jobs: int = 1,
Expand Down
4 changes: 2 additions & 2 deletions siapy/features/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

class FeatureSelectorConfig(BaseModel):
k_features: Annotated[
int | tuple | str,
int | str | tuple[int, ...],
"can be: 'best' - most extensive, (1, n) - check range of features, n - exact number of features",
] = (1, 20)
cv: int = 3
Expand All @@ -38,7 +38,7 @@ def feature_selector_factory(
problem_type: Literal["regression", "classification"],
*,
k_features: Annotated[
int | tuple | str,
int | str | tuple[int, ...],
"can be: 'best' - most extensive, (1, n) - check range of features, n - exact number of features",
] = (1, 20),
cv: int = 3,
Expand Down
8 changes: 5 additions & 3 deletions siapy/transformations/corregistrator.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from typing import Sequence

import matplotlib.pyplot as plt
import numpy as np

Expand All @@ -23,10 +25,10 @@ def map_affine_approx_2d(points_ref: np.ndarray, points_mov: np.ndarray) -> np.n


def affine_matx_2d(
scale: tuple[float, float] = (1, 1),
trans: tuple[float, float] = (0, 0),
scale: tuple[float, float] | Sequence[float] = (1, 1),
trans: tuple[float, float] | Sequence[float] = (0, 0),
rot: float = 0,
shear: tuple[float, float] = (0, 0),
shear: tuple[float, float] | Sequence[float] = (0, 0),
) -> np.ndarray:
"""Create arbitrary affine transformation matrix"""
rot = rot * np.pi / 180
Expand Down
32 changes: 23 additions & 9 deletions siapy/utils/images.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import spectral as sp

from siapy.core import logger
from siapy.core.exceptions import InvalidInputError
from siapy.core.types import ImageDataType, ImageType
from siapy.entities import SpectralImage
from siapy.transformations.image import rescale
Expand Down Expand Up @@ -172,7 +173,7 @@ def convert_radiance_image_to_reflectance(
panel_correction: np.ndarray,
save_path: Annotated[
str | Path | None, "Header file (with '.hdr' extension) name with path."
],
] = None,
**kwargs: Any,
) -> np.ndarray | SpectralImage:
image_ref_np = image.to_numpy() * panel_correction
Expand All @@ -187,14 +188,27 @@ def convert_radiance_image_to_reflectance(
def calculate_correction_factor_from_panel(
image: SpectralImage,
panel_reference_reflectance: float,
panel_shape_label: str = "reference_panel",
) -> np.ndarray | None:
panel_shape = image.geometric_shapes.get_by_name(panel_shape_label)
if panel_shape is None:
return None

panel_signatures = image.to_signatures(panel_shape.convex_hull())
panel_radiance_mean = panel_signatures.signals.mean()
panel_shape_label: str | None = None,
) -> np.ndarray:
if panel_shape_label:
panel_shape = image.geometric_shapes.get_by_name(panel_shape_label)
if not panel_shape:
raise InvalidInputError(
input_value={"panel_shape_label": panel_shape_label},
message="Panel shape label not found.",
)
panel_signatures = image.to_signatures(panel_shape.convex_hull())
panel_radiance_mean = panel_signatures.signals.mean()

else:
temp_mean = image.mean(axis=(0, 1))
if not isinstance(temp_mean, np.ndarray):
raise InvalidInputError(
input_value={"image": image},
message=f"Expected image.mean(axis=(0, 1)) to return np.ndarray, but got {type(temp_mean).__name__}.",
)
panel_radiance_mean = temp_mean

panel_reflectance_mean = np.full(image.bands, panel_reference_reflectance)
panel_correction = panel_reflectance_mean / panel_radiance_mean
return panel_correction
Expand Down
15 changes: 13 additions & 2 deletions tests/utils/test_utils_images.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ def shape(self) -> tuple[int, int, int]:
assert save_path.exists()


def test_calculate_correction_factor_from_panel(spectral_images):
def test_calculate_correction_factor_from_panel_with_label(spectral_images):
pixels = Pixels.from_iterable([(900, 1150), (1050, 1300)])
rect = Shape.from_shape_type(
shape_type="rectangle", pixels=pixels, label="reference_panel"
Expand All @@ -156,7 +156,6 @@ def test_calculate_correction_factor_from_panel(spectral_images):
panel_shape_label="reference_panel",
)

assert panel_correction is not None
assert isinstance(panel_correction, np.ndarray)
assert panel_correction.shape == (image_vnir.bands,)

Expand All @@ -168,6 +167,18 @@ def test_calculate_correction_factor_from_panel(spectral_images):
)


def test_calculate_correction_factor_from_panel_without_label(spectral_images):
image_vnir = spectral_images.vnir
panel_correction = calculate_correction_factor_from_panel(
image=image_vnir,
panel_reference_reflectance=0.3,
)
direct_panel_calculation = np.full(image_vnir.bands, 0.3) / image_vnir.mean(
axis=(0, 1)
)
assert np.array_equal(direct_panel_calculation, panel_correction)


def test_convert_radiance_image_to_reflectance_without_saving(spectral_images):
image_vnir = spectral_images.vnir
panel_correction = np.random.default_rng().random(image_vnir.bands)
Expand Down

0 comments on commit 8a398be

Please sign in to comment.