- There are two basic structures of Json
- One is object, which is wrapped by { }
- The other is array, which is wrapped by [ ]
- Json object can have zero or more fields
- Each field has name and value
- Below example has one field, of which "name" is "person" and "value" is "john"
{ "person": "john" }
-
Schema is written as Json of which root element should be 'array'
-
It is because Schema Json file can contain multiple set of Schema
-
Each Schema set is called Schema Record
[ // root is always array { }, // one schema set, which I call 'record' { } // second schema record ]
-
The schema record has fields: 'type', 'namespace', 'name', 'fields'
[ { "type" : "object" "namespace" : "schema.omp" "name": "lead" "fields" : [ { "name": "age", "type": "Integer" }, { "name": "job", "type": "String" } ] }, { // another schema record } ]
- 'type' : it is either 'object' or 'array'
- 'namespace' : it is to avoid naming conflicts (ex) schema.omp
- 'name' : name of the schema (ex) lead
- note that full name of schema record is referred as [namespace].[name]
- full name example: schema.omp.lead
- 'fields' contains the information of fields inside Json obejct or Json array
- each field consists of field "name" and field "type"
- for example, { "name" : "age", "type" : "Integer" }
- 7 types exist for type-checking
- 6 types coming from Java data types
- String, Integer, BigInteger, Double, Boolean, OffsetDateTime
- Type-checking is simply to ensure the value can be parsed with that type
- for example, if value is "10.2", it can't be pared as Integer
- 1 more type for passing around the type-checking process
- TypeCheckingPass
- 6 types coming from Java data types
- You can define customized types (see below section)
- A customized type is a schema record
- To use customized type, use full name of it as "type"
- for example, if schema record's full name is schema.person
{ "name" : "person", "type" : "schema.person" }
- This example's root structure is "object" not "array" since the outer-most wrapping is done by { and }
- This example contains 3 fields: name, age, hobbies
- The fields 'hobbies' has an array of objects as its value
{ "name": "john", "age": 30, "hobbies": [ { "name" : "soccer", "howFreq": 10 }, { "name" : "swimming", "howFreq": 1} ] }
[
{
"type": "object", // this is referring to the root structure, which always is either 'object' or 'array'
"namespace": "simple",
"name": "object",
"fields": [
{"name": "name", "type": "String"}, // There are 6 types supported: String, Integer, BigInteger, Double, Boolean, OffsetDateTime
{"name": "age", "type": "Integer"},
{"name": "hobbies", "type": "hobby.array"} // This is Customized type, "hobby.array" refers to the full name of the other schema record
]
},
{
"type": "array", // this is referring to the array of objects (hobbies field)
"namespace": "hobby",
"name": "array", // full name is "hobby.array"
"doc": "simple sub array",
"fields": [
{"name": "name", "type": "String"},
{"name": "howFreq", "type": "Integer"}
]
}
]
- This does the same thing as the previous example
[
{
"type": "object",
"namespace": "simple",
"name": "test",
"fields": [
{"name": "name", "type": "String"},
{"name": "age", "type": "Integer"},
{"name": "hobbies", "type": "hobby.object[]"} // It is possible to make an array from an object by attaching [] at the end of the full name
]
},
{
"type": "object", // note that it is 'object'
"namespace": "hobby",
"name": "object", // full name is 'hobby.object'
"doc": "simple",
"fields": [
{"name": "name", "type": "String"},
{"name": "howFreq", "type": "Integer"}
]
}
]
- please note that it's possible to use String[], Integer[] and so on
- use prefix "$REGEX$"
- use escape characters where they are needed
- example
[ { "type": "object", "namespace": "simple", "name": "test", "fields": [ {"name": "$REGEX$\\/applicant-details\\/applicant-([0-9])+\\/address-history", "type": "String"} ] } }
- if the field name is "/applicant-details/applicant-2/address-history", it is valid
- use property "rule" and prefix "$REGEX$"
- use escape characters where they are needed
- example
[ { "type": "object", "namespace": "simple", "name": "test4", "doc": "validation schema", "fields" : [ { "name": "SimpleEmail", "type": "String", "rule": "$REGEX$\\S+@\\S+\\.\\S+"} ] } ]
- use prefix
$EQUAL$ or$NOT_EQUAL$ - following letters will the value to be the condition
- Following example will
- examine if the "type" field has "Lead" value
- examine if the "key" field doesn't have "null" value
[
{
"type": "object",
"namespace": "schema.salesforce",
"name": "leadFromLead",
"doc": "schema for lead for salesforce",
"fields": [
{ "name": "type", "type": "String", "rule": "$EQUAL$Lead" }
{ "name": "key", "type": "String", "rule": "$NOT_EQUAL$null" }
]
}
]
- use property "required" and set as "true"
- don't forget double quotes around true
- example
[ { "type": "object", "namespace": "simple", "name": "test4", "doc": "validation schema", "fields" : [ { "name": "address-history", "type": "String", "required": "true" } ] } ]
- Instantiate validator with schema json file
- example
SchemaValidator schemaValidator = new SchemaValidator("testData/schema/salesforceSchema.json");
- Run validator with JsonElement (gson class)
JsonElement json = [some process] boolean isValid = schemaValidator.runWithJsonElement(json, "simple.test"); // the second argument 'simple.test' is the full name of the schema record of root element
- Run validator with Json file
boolean isValid = schemaValidator.runWithJsonFile("example/simpleStructure.json", "simple.test");
- Run editor to manipulate schema first and pass the edited schema to Validator
// load schema file to Editor SchemaEditor editor = new SchemaEditor("example/example6/usingEditor_schema.json"); // edit editor.setFieldRequired("simple.test6", "field1"); editor.setFieldRuleEqualTo("simple.test6", "field1", "abc"); // pass the edited schema to Validator ArrayList<SchemaRecord> schemas = editor.getSchemas(); SchemaValidator validator = new SchemaValidator(schemas); // Run validator boolean isValid = validator.run("example/example6/usingEditor.json", "simple.test6");