Skip to content

Latest commit

 

History

History
247 lines (227 loc) · 7.76 KB

readme.md

File metadata and controls

247 lines (227 loc) · 7.76 KB

How to wrtie/use Schema

Terminology

  • There are two basic structures of Json
    • One is object, which is wrapped by { }
    • The other is array, which is wrapped by [ ]
  • Json object can have zero or more fields
  • Each field has name and value
  • Below example has one field, of which "name" is "person" and "value" is "john"
    {
      "person": "john"
    }
    

How to write Schema

  • Schema is written as Json of which root element should be 'array'

  • It is because Schema Json file can contain multiple set of Schema

  • Each Schema set is called Schema Record

    [ // root is always array
        {   }, // one schema set, which I call 'record'
        {   }  // second schema record
    ]
    
  • The schema record has fields: 'type', 'namespace', 'name', 'fields'

    [
        {
            "type" : "object"
            "namespace" : "schema.omp"
            "name": "lead"
            "fields" : [ 
                { "name": "age", "type": "Integer" },
                { "name": "job", "type": "String"  }
            ]
        },
        {
            // another schema record
        }
    
    ]
    
    • 'type' : it is either 'object' or 'array'
    • 'namespace' : it is to avoid naming conflicts (ex) schema.omp
    • 'name' : name of the schema (ex) lead
      • note that full name of schema record is referred as [namespace].[name]
      • full name example: schema.omp.lead
    • 'fields' contains the information of fields inside Json obejct or Json array
      • each field consists of field "name" and field "type"
      • for example, { "name" : "age", "type" : "Integer" }
      • 7 types exist for type-checking
        • 6 types coming from Java data types
          • String, Integer, BigInteger, Double, Boolean, OffsetDateTime
          • Type-checking is simply to ensure the value can be parsed with that type
          • for example, if value is "10.2", it can't be pared as Integer
        • 1 more type for passing around the type-checking process
          • TypeCheckingPass
      • You can define customized types (see below section)
        • A customized type is a schema record
        • To use customized type, use full name of it as "type"
        • for example, if schema record's full name is schema.person
        { "name" : "person", "type" : "schema.person" }
        

Json Example

  • This example's root structure is "object" not "array" since the outer-most wrapping is done by { and }
  • This example contains 3 fields: name, age, hobbies
  • The fields 'hobbies' has an array of objects as its value
    {
      "name": "john",
      "age":  30,
      "hobbies": [
        { "name" : "soccer", "howFreq": 10 },
        { "name" : "swimming", "howFreq": 1}
      ]
    }
    

Writing Schema for the Example Json - 1

[
  {
    "type": "object",                               // this is referring to the root structure, which always is either 'object' or 'array'
    "namespace": "simple",
    "name": "object",
    "fields": [
      {"name": "name", "type":  "String"},          // There are 6 types supported: String, Integer, BigInteger, Double, Boolean, OffsetDateTime
      {"name": "age", "type":  "Integer"},          
      {"name": "hobbies", "type": "hobby.array"}   // This is Customized type, "hobby.array" refers to the full name of the other schema record
    ]
  },
  {
    "type": "array",                                // this is referring to the array of objects (hobbies field)
    "namespace": "hobby",
    "name": "array",                                // full name is "hobby.array"
    "doc": "simple sub array",
    "fields": [
      {"name": "name", "type":  "String"},
      {"name": "howFreq", "type":  "Integer"}
    ]
  }
]

Writing Schema for the Example Json - 2

  • This does the same thing as the previous example
[
  {
    "type": "object",
    "namespace": "simple",
    "name": "test",
    "fields": [
      {"name": "name", "type":  "String"},
      {"name": "age", "type":  "Integer"},
      {"name": "hobbies", "type": "hobby.object[]"}  // It is possible to make an array from an object by attaching [] at the end of the full name
    ]
  },
    {
    "type": "object",                               // note that it is 'object'
    "namespace": "hobby",
    "name": "object",                               // full name is 'hobby.object'
    "doc": "simple",
    "fields": [
      {"name": "name", "type":  "String"},
      {"name": "howFreq", "type":  "Integer"}
    ]
  }
]
  • please note that it's possible to use String[], Integer[] and so on

You can use Regex pattern for field name

  • use prefix "$REGEX$"
  • use escape characters where they are needed
  • example
    [
      {
        "type": "object",
        "namespace": "simple",
        "name": "test",
        "fields": [
          {"name": "$REGEX$\\/applicant-details\\/applicant-([0-9])+\\/address-history", "type":  "String"}
        ]
      }
    }
    
    • if the field name is "/applicant-details/applicant-2/address-history", it is valid

You can use Regex pattern for value check

  • use property "rule" and prefix "$REGEX$"
  • use escape characters where they are needed
  • example
    [
      {
        "type": "object",
        "namespace": "simple",
        "name": "test4",
        "doc": "validation schema",
        "fields" : [
          { "name": "SimpleEmail", "type":  "String", "rule": "$REGEX$\\S+@\\S+\\.\\S+"}
        ]
      }
    ]
    

You can use 'equal' / 'not equal' rules for value check

  • use prefix $EQUAL$ or $NOT_EQUAL$
    • following letters will the value to be the condition
  • Following example will
    • examine if the "type" field has "Lead" value
    • examine if the "key" field doesn't have "null" value
 [
   {
     "type": "object",
     "namespace": "schema.salesforce",
     "name": "leadFromLead",
     "doc": "schema for lead for salesforce",
     "fields": [
       { "name":  "type", "type":  "String", "rule": "$EQUAL$Lead" }
       { "name":  "key", "type":  "String", "rule": "$NOT_EQUAL$null" }
      ]
   }
 ]

You can check if required fields exist

  • use property "required" and set as "true"
    • don't forget double quotes around true
  • example
    [
      {
        "type": "object",
        "namespace": "simple",
        "name": "test4",
        "doc": "validation schema",
        "fields" : [
          { "name": "address-history", "type":  "String", "required": "true" }
        ]
      }
    ]
    

How to use Schema Classes

  1. Instantiate validator with schema json file
  • example
    SchemaValidator schemaValidator = new SchemaValidator("testData/schema/salesforceSchema.json");
    
  1. Run validator with JsonElement (gson class)
    JsonElement json = [some process]
    boolean isValid = schemaValidator.runWithJsonElement(json, "simple.test"); // the second argument 'simple.test' is the full name of the schema record of root element
    
  2. Run validator with Json file
    boolean isValid = schemaValidator.runWithJsonFile("example/simpleStructure.json", "simple.test");
    
    
  3. Run editor to manipulate schema first and pass the edited schema to Validator
    // load schema file to Editor
    SchemaEditor editor = new SchemaEditor("example/example6/usingEditor_schema.json");
    
    // edit
    editor.setFieldRequired("simple.test6", "field1");
    editor.setFieldRuleEqualTo("simple.test6", "field1", "abc");
    
    // pass the edited schema to Validator
    ArrayList<SchemaRecord> schemas = editor.getSchemas();
    SchemaValidator validator = new SchemaValidator(schemas);
    
    // Run validator
    boolean isValid = validator.run("example/example6/usingEditor.json", "simple.test6");