Skip to content
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions R/comparedietmatrix.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
#'I am not sure if this code works as intended. It appears so, as I have checked it,
#'but the results are not what it is expected.
#'
#'I will also need to see if edge cases, where the timerange is 1:1, work.



#This function plots the diet matrix from the mizersim objects.
#' Plot Relative Diet Proportion of each Prey/Predator
#'
#' This function takes two mizerSim objects and calculates the relative
#' change in the proportion of a given prey species in a predators diet. This
#' is done for every prey/predator in the model.
#'
#' @param harvested A mizerSim object
#' @param unharvested A mizerSim object - to compare to.
#' @param chosentime The year range to plot (example 1:2).
#'
#' @return A ggplot object of a matrix of predator species on the X axis,
#' prey species on the Y axis. The colour of the box indicates the change
#' of the proportion in the predator's diet of the given prey species.
#'
#'
#' @examples
#' harvested <- getBiomass(NS_sim)
#' unharvested <- getBiomass(NS_sim)
#' comparedietmatrix(harvested, unharvested, 5)
#'
#' @export
comparedietmatrix <- function(unharvestedprojection, harvestedprojection, timerange){

#THE TIMERANGE SHOULD BE X:Y
dietunharv <- getDiet(unharvestedprojection@params,
n = apply(unharvestedprojection@n[timerange,,], c(2, 3), mean),
n_pp = apply(unharvestedprojection@n_pp[timerange,], 2, mean),
n_other = apply(unharvestedprojection@n_other[timerange,], 2, mean),
proportion = TRUE) %>%
as.table()%>%
as.data.frame()%>%
group_by(predator, prey)%>%
summarise(Proportion=mean(Freq))

dietharv <- getDiet(unharvestedprojection@params,
n = apply(unharvestedprojection@n[timerange,,], c(2, 3), mean),
n_pp = apply(unharvestedprojection@n_pp[timerange,], 2, mean),
n_other = apply(unharvestedprojection@n_other[timerange,], 2, mean),
proportion = TRUE) %>%
as.table()%>%
as.data.frame()%>%
group_by(predator, prey)%>%
summarise(Proportion=mean(Freq))

joindiet <- left_join(dietharv, dietunharv, by = c("prey", "predator"))%>%
mutate(Difference = ((Proportion.x - Proportion.y) / Proportion.y) * 100) %>% # Calculate percentage change
select(predator, prey, Difference)%>%
filter(!predator %in% c("2", "4", "6", "8", "16", "17", "18", "19", "20", "Resource"),
!prey %in% c("2", "4", "6", "8", "16", "17", "18", "19", "20", "Resource"))

dietplot <- ggplot(joindiet, aes(x = predator, y = prey, fill = Difference)) +
geom_tile() +
scale_fill_gradient2() +
labs(x = "Predator",
y = "Prey",
fill = "Difference") +
theme_minimal()+
theme(axis.text.x = element_text(angle = 45, hjust = 1,size = 14),
axis.text.y = element_text(size = 14),
axis.title.x = element_text(size = 16),
axis.title.y = element_text(size = 16))


return(dietplot)

}
151 changes: 151 additions & 0 deletions R/guildplot.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@

#' Plot Guild Relative Change Across Timescales
#'
#' This function takes two mizerSim objects and calculates the relative %
#' change in each given feeding guilde in the chosen year, short term (1/2 of the
#' chosen year) and the long term (2x the chosen year)
#' This function requires a dataframe in the environment titled guildparams - this dataframe should have
#' a column for minw (minimum weight of guild), maxw (maxmimum weight), guild (
#' the guild for the given weight), and a column for the species (which matches the mizersim species).
#' The mizerSim objects must also have a tmax of 2 * year2.
#'
#'
#' @param harvested A mizerSim object
#' @param unharvested A mizerSim object - to compare to.
#' @param year1 The lower year to plot in the range
#' @param year2 The higher year to plot in the range
#'
#' @return A ggplot object that plots 3 bars per species - in the short,
#' chosen and long time - it plots the relative biomass of each feeding guild
#' in comparison to the unharvested.
#'
#'
#' @examples
#' harvested <- getBiomass(NS_sim)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In this example you are calling guildplot() with a biomass arrays. but in the function body it seems you want it to be called with MizerSim objects

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Luca. Thank you very much for your pull request. To make it easier for me to review this, please add working examples for all plotting functions.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi Gustav, I've changed the examples now so they should work. Let me know if there anything else I can do.

#' unharvested <- getBiomass(NS_sim)
#' guildplot(harvested, unharvested, 1, 2)
#'
#' @export
guildplot <- function(harvestedprojection, unharvestedprojection, year1, year2) {

harvestedshort <- plotSpectra(harvestedprojection, time_range = max(1, round(year1 * (1/2))):max(1, round(year2 * (1/2))), return_data = TRUE)
harvested <- plotSpectra(harvestedprojection, time_range = year1:year2, return_data = TRUE)
harvestedlong <- plotSpectra(harvestedprojection, time_range = (year1 * 2):(year2 * 2), return_data = TRUE)

unharvestedshort <- plotSpectra(unharvestedprojection, time_range = max(1, round(year1 * (1/2))):max(1, round(year2 * (1/2))), return_data = TRUE)
unharvested <- plotSpectra(unharvestedprojection, time_range = year1:year2, return_data = TRUE)
unharvestedlong <- plotSpectra(unharvestedprojection, time_range = (year1 * 2):(year2 * 2), return_data = TRUE)

process_guilds <- function(mizerprojection) {


assign_guild <- function(data, rules) {
data <- data %>%
mutate(Guild = NA_character_) # Initialize Guild column with NA

# Loop through each rule in the rules dataframe
for (i in 1:nrow(rules)) {
data <- data %>%
mutate(
#THIS CODE ASSUMES THAT ANYTHING UNDER W 0.05 IS PLANKTIVOROUS, AS IT IS VERY SMALL
Guild = ifelse(w < 0.05, "Plank",
ifelse(
is.na(Guild) & w >= rules$minw[i] & w < rules$maxw[i],
rules$Feeding.guild[i], Guild)
)
)
}

return(data)
}


mizerprojection <- mizerprojection %>%
group_by(Species) %>%
group_modify(~ {
species_data <- .x

species_name <- unique(species_data$Legend)

species_rules <- guildparams %>%
filter(Species == species_name)

if (nrow(species_rules) == 0) {
return(species_data)
}

assign_guild(species_data, species_rules)

}) %>%
ungroup() %>%
#this next step takes out anything without an assigned guild, but you might not choose to do this
#and then you can have a column of the change in biomass of species/sizes that we do not have guild rules for
#this would be useful to observe where the biomass change is going, but would be confusing to interpret and explain.
#(as its a possibility that all 3 guilds show a negative decrease, which looks like a decrease in biomass,
#but may just be due to other sizes/species taking this biomass)
drop_na(Guild)%>%
group_by(Guild) %>%
summarise(value = mean(value))

return(mizerprojection)

}

#for the harvested -
guildsshort <- process_guilds(harvestedshort)
guilds <- process_guilds(harvested)
guildslong <- process_guilds(harvestedlong)
#for the unharvested -
unguildsshort <- process_guilds(unharvestedshort)
unguilds <- process_guilds(unharvested)
unguildslong <- process_guilds(unharvestedlong)

#now joining them together
guildsshort$time <- "short"
guilds$time <- "chosen"
guildslong$time <- "long"
unguildsshort$time <- "short"
unguilds$time <- "chosen"
unguildslong$time <- "long"

joinedguilds <- bind_rows(guildsshort, guilds, guildslong) %>%
group_by(Guild, time) %>%
summarise(value = sum(value, na.rm = TRUE), .groups = "drop")

unjoinedguilds <- bind_rows(unguildsshort, unguilds, unguildslong) %>%
group_by(Guild, time) %>%
summarise(value = sum(value, na.rm = TRUE), .groups = "drop")

joinedguilds <- joinedguilds%>%
full_join(unjoinedguilds, by = c("Guild", "time"),relationship = "many-to-many") %>%
mutate(percentage_diff = ((value.x-value.y)/value.y))%>%
select(Guild, time, percentage_diff)

#this sets the colours correctly
joinedguilds$time <- factor(joinedguilds$time, levels = c("short", "chosen", "long"))
joinedguilds$fill_group <- interaction(joinedguilds$percentage_diff >= 0, joinedguilds$time)

#plotting
ggplot(joinedguilds, aes(x = Guild, y = percentage_diff, fill = fill_group)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
scale_fill_manual(values = c(
"FALSE.short" = "#E76F51",
"FALSE.chosen" = "#E98C6B",
"FALSE.long" = "#F2A488",
"TRUE.short" = "#2FA4E7",
"TRUE.chosen" = "#2FA4E7cc",
"TRUE.long" = "#2FA4E799"
)) +
labs(title = "Percentage Change by Guild",
x = "Guild",
y = "Percentage Change") +
theme_minimal() +
theme(
axis.text.x = element_text(size = 14, angle = 90, hjust = 1, vjust = 0.5),
axis.text.y = element_text(size = 14),
legend.position = "none",
axis.title.x = element_text(size = 16),
axis.title.y = element_text(size = 16)
)

}
142 changes: 142 additions & 0 deletions R/plotSpeciesWithTimeRange.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
#This function plots the species plot - which the change in species for a given
#year, and also for 2x in future and 1/2 year in the past.


#' Plot MizerSim Relative Biomass per Species Across Varying Timescales
#'
#' This function takes two mizerSim objects and calculates the relative %
#' change in each given species in the chosen year, short term (1/2 of the
#' chosen year) and the long term (2x the chosen year). The mizerSim
#' objects must have tmax = 2 * chosentime2.
#'
#' @param harvested A mizerSim object
#' @param unharvested A mizerSim object - to compare to.
#' @param chosentime The year to plot
#'
#' @return A ggplot object that plots 3 bars per species - in the short,
#' chosen and long time - it plots the relative biomass of each species in
#' comparison to the unharvested.
#'
#'
#' @examples
#' harvested <- getBiomass(NS_sim)
#' unharvested <- getBiomass(NS_sim)
#' plotSpeciesWithTimeRange(harvested, unharvested, 1, 2)
#'
#' @export
plotSpeciesWithTimeRange <- function(harvestedprojection, unharvestedprojection, chosentime1, chosentime2) {

#get the biomass of the species
unharvestedbio <- getBiomass(unharvestedprojection) %>%
.[chosentime1:chosentime2, ] %>%
melt() %>%
group_by(sp) %>%
summarize(value = mean(value, na.rm = TRUE))

harvestedbio <- getBiomass(harvestedprojection) %>%
.[chosentime1:chosentime2, ] %>%
melt() %>%
group_by(sp) %>%
summarize(value = mean(value, na.rm = TRUE))

#calculate percentage change in species in the chosen year
percentage_diff <- harvestedbio %>%
left_join(unharvestedbio, by = "sp") %>%
mutate(percentage_diff = ((value.x - value.y) / value.y) * 100,
Species = sp) %>%
select(Species, percentage_diff) %>%
filter(!Species %in% c("2", "4", "6", "8", "16", "17", "18", "19", "20", "Resource"))%>%
mutate(class = "chosen")

calculate_biomass_triples <- function(unharvestedprojection, harvestedprojection, year1, year2) {

# Calculate unharvested biomass at different time points
unharvestedbiotriple <- getBiomass(unharvestedprojection)

#the range has to be 1-2, becuase if it is 1-1 it messes with the way the data is formatted.
#i have also used ceiling here, because using round means they round to nearest even number, so some cases (11:13)
#end up as 6:6 for the lowbiotrip - this does not work for the code format.
lowunbiotrip <- unharvestedbiotriple[max(1, ceiling(year1 * (1/2))):max(2, ceiling(year2 * (1/2))), ] %>%
melt() %>%
group_by(sp) %>%
summarize(value = mean(value, na.rm = TRUE))

highunbiotrip <- unharvestedbiotriple[(year1 * 2):(year2 * 2), ] %>%
melt() %>%
group_by(sp) %>%
summarize(value = mean(value, na.rm = TRUE))

# Calculate harvested biomass at different time points
harvestedbiotriple <- getBiomass(harvestedprojection)

lowbiotrip <- harvestedbiotriple[max(1, ceiling(year1 * (1/2))):max(2, ceiling(year2 * (1/2))),] %>%
melt() %>%
group_by(sp) %>%
summarize(value = mean(value, na.rm = TRUE))

highbiotrip <- harvestedbiotriple[(year1 * 2):(year2 * 2), ] %>%
melt() %>%
group_by(sp) %>%
summarize(value = mean(value, na.rm = TRUE))

# Return the results as a list
list(
lowunbiotrip,
highunbiotrip,
lowbiotrip,
highbiotrip
)
}

#calculate percentage change in other years
biorange <- calculate_biomass_triples(unharvestedprojection, harvestedprojection, chosentime1, chosentime2)

#percentage_difflow <- percentdiff(biorange[[3]], biorange[[1]])
#percentage_difflow$class <- "short"

percentage_difflow <- biorange[[3]] %>%
left_join(biorange[[1]], by = "sp") %>%
mutate(percentage_diff = ((value.x - value.y) / value.y) * 100,
Species = sp) %>%
select(Species, percentage_diff) %>%
filter(!Species %in% c("2", "4", "6", "8", "16", "17", "18", "19", "20", "Resource"))%>%
mutate(class = "short")

#percentage_diffhigh <- percentdiff(biorange[[4]], biorange[[2]])
#percentage_diffhigh$class <- "long"

percentage_diffhigh <- biorange[[4]] %>%
left_join(biorange[[2]], by = "sp") %>%
mutate(percentage_diff = ((value.x - value.y) / value.y) * 100,
Species = sp) %>%
select(Species, percentage_diff) %>%
filter(!Species %in% c("2", "4", "6", "8", "16", "17", "18", "19", "20", "Resource"))%>%
mutate(class = "long")

percentage_diff <- rbind(percentage_difflow, percentage_diff, percentage_diffhigh)

#now plot them together - the first lines sort out the colors of the bars
percentage_diff$class <- factor(percentage_diff$class, levels = c("short", "chosen", "long"))
percentage_diff$fill_group <- interaction(percentage_diff$percentage_diff >= 0, percentage_diff$class)

ggplot(percentage_diff, aes(x = Species, y = percentage_diff, fill = fill_group)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
geom_hline(yintercept = 0, color = "grey", linetype = "dashed", size = 0.5)+
labs(x = "Species", y = "Percentage Change") +
scale_fill_manual(values = c(
"FALSE.short" = "#E76F51",
"FALSE.chosen" = "#E98C6B",
"FALSE.long" = "#F2A488",
"TRUE.short" = "#2FA4E7",
"TRUE.chosen" = "#2FA4E7cc",
"TRUE.long" = "#2FA4E799"
)) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 16, angle = 90, hjust = 1, vjust = 0.5),
axis.text.y = element_text(size = 14),
legend.position = "none",
axis.title.x = element_text(size = 16),
axis.title.y = element_text(size = 16)
)
}
Loading