Skip to content

sjcabs/flyvis_tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FlyVis Tutorial

Connectome-constrained models of the fruit fly visual system

Tutorial material for working with FlyVis models at the Winter School on Computational Approaches in Biological Sciences (SJCABS).

Overview

Tutorial Topic Description
0 Using the model Load a pretrained model, stimulate it, plot neural responses, and update parameters with gradient descent
1 Mechanism discovery Apply UMAP dimensionality reduction and Gaussian mixture clustering to discover computational strategies
2 Deep stimulus design Find optimal naturalistic stimuli and generate artificial optimal stimuli using gradient-based optimization

Installation

Google Colab Enterprise

Run this in the first cell of your notebook:

!pip install "git+https://github.com/sjcabs/flyvis_tutorial.git"
!flyvis download-pretrained

Local Installation

Requires Python 3.11.

# Clone the repository
git clone https://github.com/sjcabs/flyvis_tutorial.git
cd flyvis_tutorial

# Create a conda environment (recommended)
conda create -n flyvis_tutorial python=3.11
conda activate flyvis_tutorial

# Install the package
pip install -e .

# Download pretrained models
flyvis download-pretrained

Acknowledgments

This tutorial was adapted from the FlyVis visual system tutorial by Janne Lappalainen.

References

Lappalainen, J. K. et al. Connectome-constrained networks predict neural activity across the fly visual system. Nature 634, 1132–1140 (2024). https://doi.org/10.1038/s41586-024-07939-3

FlyVis Documentation: https://turagalab.github.io/flyvis/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published