This is the code that we use to train and evaluate. The following figures are the the evaluation results. (first row: DroNet [1]; second row: TrailNet [2]; Third row: our UAVPatrolNet )
This code has been tested on Ubuntu 18.04, and on Python 3.6.
Dependencies:
- TensorFlow 1.15.0
- Keras 2.2.4
- Keras-contrib 2.0.8
- tensorflow-estimator
- tensorflow-probability
- tensorflow-tensorboard
- NumPy
- OpenCV
- scikit-learn
- Python gflags
-
Run the test code, there are
predict_UAVPatrolNet.py
,predict_DroNet.py
andpredict_TrailNet.py
python predict_whichNet.py [Flags]
Check configuration parameters in
common_flags.py
-
Run the accuracy calculation code, there are
evaluate_UAVPatrolNet.py
,evaluate_DroNet.py
andevaluate_TrailNet.py
python evaluate_whichNet.py [Flags]
-
Format of data set.
validation_dir/ direction/ images/ direction_n_filted.txt translation/ images/ translation.txt ... test_dir/ testingset1/ images/
Reference: [1]. A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly by driving,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088–1095, 2018. [2]. N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward low-flying autonomous mav trail navigation using deep neural networks for environmental awareness,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 4241–4247.