Skip to content

slevin48/automate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Automate Excel, Word and the Web using Python

Excel Sheet Splitter Open in Streamlit

Streamlit app to split sheets of Excel files: https://excel-splitter-48.herokuapp.com/

split-sheet-app.mp4

Excel automation

https://openpyxl.readthedocs.io/en/stable/

We get the price of real estate in Paris 14 from the following gist: https://gist.github.com/slevin48/05c0d4f348f0f10870a0fa721cfcb1b1

Adding manually a second sheet selecting only the surface and price

workbook = xl.load_workbook('dvf14_chart.xlsx')
sheet_2 = workbook['Sheet2']

immo_chart

chart = ScatterChart()
chart.title = "Scatter Chart"
chart.style = 13
chart.y_axis.title = 'Price'
chart.x_axis.title = 'Surface'

xvalues = Reference(sheet_2, min_col = 1, min_row = 2, max_row = sheet_1.max_row)
values = Reference(sheet_2, min_col=2, min_row=1, max_row=mr)
series = Series(values, xvalues,title_from_data=True)
series.marker.symbol = "diamond"
series.marker.graphicalProperties.solidFill = "0000FF" # Marker filling
series.marker.graphicalProperties.line.solidFill = "0000FF" # Marker outline
series.graphicalProperties.line.noFill = True  # hide lines
chart.series.append(series)

sheet_2.add_chart(chart, "D2")
workbook.save('dvf14_chart.xlsx')

Extracting chart

Access Excel through COM

pip install pywin32
input_file = "C:/Users/.../Book1.xlsx"
output_image = "C:/Users/.../chart.png"
operation = win32com.client.Dispatch("Excel.Application")
operation.Visible = 0
operation.DisplayAlerts = 0
workbook_bis = operation.Workbooks.Open(input_file)
sheet_bis = operation.Sheets(1)

And use Pillow to grab image https://pillow.readthedocs.io/en/stable/index.html

pip install pillow

iterate over all of the chart objects in the spreadsheet (if there are more than one) and save them in the specified location as such:

for x, chart in enumerate(sheet_bis.Shapes):
    chart.Copy()
    image = ImageGrab.grabclipboard()
    image.save(output_image, 'png')
    pass
workbook_bis.Close(True)
operation.Quit()

chart

Create Word report

https://python-docx.readthedocs.io/en/latest/

from docx import Document

document = Document()
document.add_heading('Report on Excel and Word automation', 0)

...

document.save('dvf14_report.docx')

report

Scraping web pages with Beautiful Soup

Beautiful Soup Documentation

Example: web_automate.ipynb

import requests as rq
from bs4 import BeautifulSoup

URL = 'https://realpython.github.io/fake-jobs/'
page = rq.get(URL)
soup = BeautifulSoup(page.content, "html.parser")
res = soup.find_all(class_ = "location")
open("location1.txt","w").write(res[0].text)

Automate the browser interaction with Selenium

Installation

Browser Webdriver
Chrome: https://sites.google.com/chromium.org/driver/
Edge: https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
Firefox: https://github.com/mozilla/geckodriver/releases

Simple usage

https://selenium-python.readthedocs.io/getting-started.html#simple-usage

Locating elements

https://selenium-python.readthedocs.io/locating-elements.html

Example usage:

from selenium.webdriver.common.by import By

driver.find_element(By.XPATH, '//button[text()="Some text"]')
driver.find_elements(By.XPATH, '//button')

These are the attributes available for By class:

ID = "id"
XPATH = "xpath"
LINK_TEXT = "link text"
PARTIAL_LINK_TEXT = "partial link text"
NAME = "name"
TAG_NAME = "tag name"
CLASS_NAME = "class name"
CSS_SELECTOR = "css selector"
from selenium import webdriver
from selenium.webdriver.common.by import By
driver = webdriver.Chrome()
url = "https://realpython.github.io/fake-jobs/"
title = driver.find_element(by=By.CLASS_NAME, value="title")
print(title.text)
res = driver.find_elements(by=By.TAG_NAME, value="img")
src = res[0].get_property('src')
item = driver.find_elements(by=By.CLASS_NAME, value="card-footer-item")
# Get apply link
apply = [r for r in item[1::2]] # every other element of the list (starting at the second element)
apply[0].click()
# Or simply get location of the link
href = apply[0].get_attribute('href')
driver.get(href)

Resources

is_it_worth_the_time

Releases

No releases published

Packages

No packages published