-
Notifications
You must be signed in to change notification settings - Fork 43
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Feature/time series dataframe #431
Merged
yungyuc
merged 3 commits into
solvcon:master
from
xingularity:feature/time-series-dataframe
Nov 5, 2024
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
# Copyright (c) 2024, Zong-han, Xie <[email protected]> | ||
# | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions are met: | ||
# | ||
# - Redistributions of source code must retain the above copyright notice, this | ||
# list of conditions and the following disclaimer. | ||
# - Redistributions in binary form must reproduce the above copyright notice, | ||
# this list of conditions and the following disclaimer in the documentation | ||
# and/or other materials provided with the distribution. | ||
# - Neither the name of the copyright holder nor the names of its contributors | ||
# may be used to endorse or promote products derived from this software | ||
# without specific prior written permission. | ||
# | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | ||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
# POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import os | ||
import contextlib | ||
from io import StringIO | ||
import unittest | ||
|
||
import numpy as np | ||
|
||
from modmesh import SimpleArrayUint64, SimpleArrayFloat64 | ||
|
||
|
||
class TimeSeriesDataFrame(object): | ||
|
||
def __init__(self): | ||
self._init_members() | ||
|
||
def _init_members(self): | ||
self._columns = list() | ||
self._index_data = None | ||
self._index_name = None | ||
self._data = list() | ||
|
||
def read_from_text_file( | ||
self, | ||
fname, | ||
delimiter=',', | ||
timestamp_in_file=True, | ||
timestamp_column=None | ||
): | ||
""" | ||
Generate dataframe from a text file. | ||
|
||
:param fname: path to the text file. | ||
:type fname: str | Iterable[str] | io.StringIO | ||
:param delimiter: delimiter. | ||
:type delimiter: str | ||
:param timestamp_in_file: If the text file containing index column, | ||
data in this column expected to be integer. | ||
:type timestamp_in_file: bool | ||
:prarm timestamp_column: Column which stores timestamp data. | ||
:type timestamp_column: str | ||
:return: None | ||
""" | ||
|
||
if isinstance(fname, str): | ||
if not os.path.exists(fname): | ||
raise Exception("Text file '{}' does not exist".format(fname)) | ||
fid = open(fname, 'rt') | ||
fid_ctx = contextlib.closing(fid) | ||
else: | ||
fid = fname | ||
fid_ctx = contextlib.nullcontext(fid) | ||
|
||
with fid_ctx: | ||
fhd = iter(fid) | ||
|
||
idx_col_num = 0 if timestamp_in_file else None | ||
|
||
table_header = [ | ||
x.strip() for x in next(fhd).strip().split(delimiter) | ||
] | ||
nd_arr = np.genfromtxt(fhd, delimiter=delimiter) | ||
|
||
self._init_members() | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Re-initiate object members when reading a new file using same object. |
||
|
||
if timestamp_in_file: | ||
if timestamp_column in table_header: | ||
idx_col_num = table_header.index(timestamp_column) | ||
self._index_data = SimpleArrayUint64( | ||
array=nd_arr[:, idx_col_num].astype(np.uint64) | ||
) | ||
self._index_name = table_header[idx_col_num] | ||
else: | ||
self._index_data = SimpleArrayUint64( | ||
array=np.arange(nd_arr.shape[0]).astype(np.uint64) | ||
) | ||
self._index_name = "Index" | ||
|
||
self._columns = table_header | ||
if idx_col_num is not None: | ||
self._columns.pop(idx_col_num) | ||
|
||
for i in range(nd_arr.shape[1]): | ||
if i != idx_col_num: | ||
self._data.append( | ||
SimpleArrayFloat64(array=nd_arr[:, i].copy()) | ||
) | ||
|
||
def __getitem__(self, name): | ||
if name not in self._columns: | ||
raise Exception("Column '{}' does not exist".format(name)) | ||
return self._data[self._columns.index(name)].ndarray | ||
|
||
@property | ||
def columns(self): | ||
return self._columns | ||
|
||
@property | ||
def shape(self): | ||
return (self._index_data.ndarray.shape[0], len(self._data)) | ||
|
||
@property | ||
def index(self): | ||
return self._index_data.ndarray | ||
|
||
|
||
class TimeSeriesDataFrameTC(unittest.TestCase): | ||
|
||
col_sol = ['DELTA_VEL[1]', 'DELTA_VEL[2]', 'DELTA_VEL[3]'] | ||
col_sol2 = ['DELTA_VEL[1]', 'DELTA_VEL[2]', 'EPOCH', 'DELTA_VEL[3]'] | ||
|
||
dlc_data = """EPOCH ,DELTA_VEL[1] ,DELTA_VEL[2] ,DELTA_VEL[3] | ||
1.6025960102293e+18,-0.18792724609375,-0.00048828125,-0.0478515625 | ||
1.60259601024931e+18,-0.1903076171875,-0.0009765625,-0.0489501953125 | ||
1.60259601026931e+18,-0.18743896484375,0.0006103515625,-0.0498046875 | ||
1.60259601028932e+18,-0.18927001953125,-0.0009765625,-0.04840087890625 | ||
1.60259601030931e+18,-0.188720703125,-0.00103759765625,-0.0504150390625 | ||
1.60259601032931e+18,-0.18951416015625,-0.000732421875,-0.0489501953125 | ||
1.60259601034931e+18,-0.18902587890625,-0.000732421875,-0.0489501953125 | ||
1.6025960103693e+18,-0.1895751953125,-0.00128173828125,-0.04925537109375 | ||
1.60259601038931e+18,-0.18841552734375,6.103515625e-05,-0.0489501953125 | ||
1.60259601040931e+18,-0.1884765625,-0.00042724609375,-0.04840087890625 | ||
""" | ||
modified_dlc_data = """DELTA_VEL[1] ,DELTA_VEL[2] ,EPOCH ,DELTA_VEL[3] | ||
-0.18792724609375,-0.00048828125,1602596010229299968,-0.0478515625 | ||
-0.1903076171875,-0.0009765625,1602596010249309952,-0.0489501953125 | ||
-0.18743896484375,0.0006103515625,1602596010269309952,-0.0498046875 | ||
-0.18927001953125,-0.0009765625,1602596010289319936,-0.04840087890625 | ||
-0.188720703125,-0.00103759765625,1602596010309309952,-0.0504150390625 | ||
-0.18951416015625,-0.000732421875,1602596010329309952,-0.0489501953125 | ||
-0.18902587890625,-0.000732421875,1602596010349309952,-0.0489501953125 | ||
-0.1895751953125,-0.00128173828125,1602596010369299968,-0.04925537109375 | ||
-0.18841552734375,6.103515625e-05,1602596010389309952,-0.0489501953125 | ||
-0.1884765625,-0.00042724609375,1602596010409309952,-0.04840087890625 | ||
""" | ||
|
||
def test_read_from_text_file_basic(self): | ||
tsdf = TimeSeriesDataFrame() | ||
|
||
tsdf.read_from_text_file(StringIO(self.dlc_data)) | ||
self.assertEqual(tsdf._columns, self.col_sol) | ||
self.assertEqual(len(tsdf._columns), 3) | ||
for i in range(len(tsdf._columns)): | ||
self.assertEqual(tsdf._data[i].ndarray.shape[0], 10) | ||
self.assertEqual(tsdf._index_name, 'EPOCH') | ||
|
||
tsdf.read_from_text_file( | ||
StringIO(self.modified_dlc_data), | ||
delimiter=',', | ||
timestamp_column='EPOCH' | ||
) | ||
|
||
self.assertEqual(tsdf._columns, self.col_sol) | ||
self.assertEqual(len(tsdf._columns), 3) | ||
for i in range(len(tsdf._columns)): | ||
self.assertEqual(tsdf._data[i].ndarray.shape[0], 10) | ||
self.assertEqual(tsdf._index_name, 'EPOCH') | ||
|
||
tsdf.read_from_text_file( | ||
StringIO(self.modified_dlc_data), | ||
delimiter=',', | ||
timestamp_in_file=False | ||
) | ||
self.assertEqual(tsdf._columns, self.col_sol2) | ||
self.assertEqual(len(tsdf._columns), 4) | ||
for i in range(len(tsdf._columns)): | ||
self.assertEqual(tsdf._data[i].ndarray.shape[0], 10) | ||
self.assertEqual(tsdf._index_name, 'Index') | ||
|
||
def test_dataframe_attribute_columns(self): | ||
tsdf = TimeSeriesDataFrame() | ||
tsdf.read_from_text_file(StringIO(self.dlc_data)) | ||
self.assertEqual(tsdf.columns, self.col_sol) | ||
|
||
def test_dataframe_attribute_shape(self): | ||
tsdf = TimeSeriesDataFrame() | ||
tsdf.read_from_text_file(StringIO(self.dlc_data)) | ||
self.assertEqual(tsdf.shape, (10, 3)) | ||
|
||
def test_dataframe_attribute_index(self): | ||
tsdf = TimeSeriesDataFrame() | ||
tsdf.read_from_text_file(StringIO(self.dlc_data)) | ||
|
||
nd_arr = np.genfromtxt(StringIO(self.dlc_data), delimiter=',')[1:] | ||
|
||
self.assertEqual( | ||
list(tsdf.index), list(nd_arr[:, 0].astype(np.uint64)) | ||
) | ||
|
||
def test_dataframe_get_column(self): | ||
tsdf = TimeSeriesDataFrame() | ||
tsdf.read_from_text_file(StringIO(self.dlc_data)) | ||
|
||
col_data = tsdf['DELTA_VEL[1]'] | ||
|
||
nd_arr = np.genfromtxt(StringIO(self.dlc_data), delimiter=',')[1:] | ||
|
||
self.assertEqual(list(col_data), list(nd_arr[:, 1])) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The code will be more readable to have member data listed in
__init__()
, but keeping them in a separate function is OK for now in the prototype.