-
Notifications
You must be signed in to change notification settings - Fork 278
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
zilonghuang
committed
Feb 7, 2021
1 parent
449417e
commit 37351ae
Showing
21 changed files
with
16,078 additions
and
15,108 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
#!/usr/bin/env python3 | ||
# encoding: utf-8 | ||
# @Time : 2018/8/2 下午3:23 | ||
# @Author : yuchangqian | ||
# @Contact : [email protected] | ||
# @File : engine.py | ||
import os | ||
import os.path as osp | ||
import time | ||
import argparse | ||
|
||
import torch | ||
import torch.distributed as dist | ||
|
||
from utils.logger import get_logger | ||
from utils.pyt_utils import parse_devices, all_reduce_tensor, extant_file | ||
|
||
try: | ||
from apex.parallel import DistributedDataParallel, SyncBatchNorm | ||
except ImportError: | ||
raise ImportError( | ||
"Please install apex from https://www.github.com/nvidia/apex .") | ||
|
||
|
||
logger = get_logger() | ||
|
||
|
||
class Engine(object): | ||
def __init__(self, custom_parser=None): | ||
logger.info( | ||
"PyTorch Version {}".format(torch.__version__)) | ||
self.devices = None | ||
self.distributed = False | ||
|
||
if custom_parser is None: | ||
self.parser = argparse.ArgumentParser() | ||
else: | ||
assert isinstance(custom_parser, argparse.ArgumentParser) | ||
self.parser = custom_parser | ||
|
||
self.inject_default_parser() | ||
self.args = self.parser.parse_args() | ||
|
||
self.continue_state_object = self.args.continue_fpath | ||
|
||
# if not self.args.gpu == 'None': | ||
# os.environ["CUDA_VISIBLE_DEVICES"]=self.args.gpu | ||
|
||
if 'WORLD_SIZE' in os.environ: | ||
self.distributed = int(os.environ['WORLD_SIZE']) > 1 | ||
|
||
if self.distributed: | ||
self.local_rank = self.args.local_rank | ||
self.world_size = int(os.environ['WORLD_SIZE']) | ||
torch.cuda.set_device(self.local_rank) | ||
dist.init_process_group(backend="nccl", init_method='env://') | ||
self.devices = [i for i in range(self.world_size)] | ||
else: | ||
gpus = os.environ["CUDA_VISIBLE_DEVICES"] | ||
self.devices = [i for i in range(len(gpus.split(',')))] | ||
|
||
def inject_default_parser(self): | ||
p = self.parser | ||
p.add_argument('-d', '--devices', default='', | ||
help='set data parallel training') | ||
p.add_argument('-c', '--continue', type=extant_file, | ||
metavar="FILE", | ||
dest="continue_fpath", | ||
help='continue from one certain checkpoint') | ||
p.add_argument('--local_rank', default=0, type=int, | ||
help='process rank on node') | ||
|
||
def data_parallel(self, model): | ||
if self.distributed: | ||
model = DistributedDataParallel(model) | ||
else: | ||
model = torch.nn.DataParallel(model) | ||
return model | ||
|
||
def get_train_loader(self, train_dataset): | ||
train_sampler = None | ||
is_shuffle = True | ||
batch_size = self.args.batch_size | ||
|
||
if self.distributed: | ||
train_sampler = torch.utils.data.distributed.DistributedSampler( | ||
train_dataset) | ||
batch_size = self.args.batch_size // self.world_size | ||
is_shuffle = False | ||
|
||
train_loader = torch.utils.data.DataLoader(train_dataset, | ||
batch_size=batch_size, | ||
num_workers=self.args.num_workers, | ||
drop_last=False, | ||
shuffle=is_shuffle, | ||
pin_memory=True, | ||
sampler=train_sampler) | ||
|
||
return train_loader, train_sampler | ||
|
||
def get_test_loader(self, test_dataset): | ||
test_sampler = None | ||
is_shuffle = False | ||
batch_size = self.args.batch_size | ||
|
||
if self.distributed: | ||
test_sampler = torch.utils.data.distributed.DistributedSampler( | ||
test_dataset) | ||
batch_size = self.args.batch_size // self.world_size | ||
|
||
test_loader = torch.utils.data.DataLoader(test_dataset, | ||
batch_size=batch_size, | ||
num_workers=self.args.num_workers, | ||
drop_last=False, | ||
shuffle=is_shuffle, | ||
pin_memory=True, | ||
sampler=test_sampler) | ||
|
||
return test_loader, test_sampler | ||
|
||
|
||
def all_reduce_tensor(self, tensor, norm=True): | ||
if self.distributed: | ||
return all_reduce_tensor(tensor, world_size=self.world_size, norm=norm) | ||
else: | ||
return torch.mean(tensor) | ||
|
||
|
||
def __enter__(self): | ||
return self | ||
|
||
def __exit__(self, type, value, tb): | ||
torch.cuda.empty_cache() | ||
if type is not None: | ||
logger.warning( | ||
"A exception occurred during Engine initialization, " | ||
"give up running process") | ||
return False |
Oops, something went wrong.