Skip to content

srafay/Machine_Learning_A-Z

Folders and files

NameName
Last commit message
Last commit date

Latest commit

868976e · Jun 15, 2021

History

32 Commits
Apr 5, 2018
Apr 5, 2018
Aug 28, 2017
Mar 2, 2019
Oct 19, 2017
Apr 5, 2018
Oct 19, 2017
Jun 8, 2018
Jun 12, 2021

Repository files navigation

Machine Learning A-Z

A step towards Data Science and Machine Learning

Contains the code and implementation of the following topics and techniques:

  1. Data Preprocessing

    • Importing the dataset
    • Dealing with missing data
    • Splitting the data into test set and training set
    • Feature Scalling
  2. Regression

    • Simple Linear Regression
    • Multiple Linear Regression
    • Polynomial Linear Regression
    • Support Vector Regression (SVR)
    • Decision Tree Regression
    • Random Forest Regression
  3. Classification

    • Logistic Regression
    • K-Nearest Neighbors (K-NN)
    • Support Vector Machine (SVM)
    • Kernel SVM
    • Naive Bayes
    • Decision Tree Classifiers
    • Random Forest Classifiers
  4. Clustering

    • K-Means Clustering
    • Hierarchical Clustering
  5. Association Rule Learning

    • Apriori
  6. Deep Learning

    • Artifial Neural Networks (ANN)
    • Convolutional Neural Networks (CNN)