-
Notifications
You must be signed in to change notification settings - Fork 349
Integrate Psychometric-Based Question Validity Tools into HELM (Issue #3645) #3669
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
yuhengtu
wants to merge
4
commits into
stanford-crfm:main
Choose a base branch
from
yuhengtu:validity_check
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,346 @@ | ||
| # flake8: noqa | ||
| # type: ignore | ||
| # fmt: off | ||
|
|
||
| import io | ||
| import pickle | ||
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | ||
|
|
||
| import numpy as np | ||
| import pandas as pd | ||
| import torch | ||
| from huggingface_hub import HfApi, hf_hub_download, login | ||
| from pyrelimri.tetrachoric_correlation import tetrachoric_corr | ||
| from torch.distributions import Bernoulli | ||
| from tqdm import tqdm | ||
|
|
||
|
|
||
| def trainer(parameters: List[torch.Tensor], | ||
| optim: torch.optim.Optimizer, | ||
| closure: Callable[[], | ||
| torch.Tensor]) -> List[torch.Tensor]: | ||
| pbar = tqdm(range(100)) | ||
| loss: torch.Tensor | ||
| for iteration in pbar: | ||
| if iteration > 0: | ||
| previous_parameters = [p.clone() for p in parameters] | ||
| previous_loss = loss.clone() | ||
| loss = optim.step(closure) | ||
| if iteration > 0: | ||
| d_loss = (previous_loss - loss).item() | ||
| d_parameters = sum( | ||
| torch.norm( | ||
| prev - curr, | ||
| p=2).item() for prev, | ||
| curr in zip( | ||
| previous_parameters, | ||
| parameters)) | ||
| grad_norm = sum(torch.norm(p.grad, p=2).item() | ||
| for p in parameters if p.grad is not None) | ||
| pbar.set_postfix( | ||
| {"grad_norm": grad_norm, "d_parameter": d_parameters, "d_loss": d_loss}) | ||
| if d_loss < 1e-5 and d_parameters < 1e-5 and grad_norm < 1e-5: | ||
| break | ||
| return parameters | ||
|
|
||
|
|
||
| # The following function is copied verbatim from: | ||
| # https://github.com/hardy-education/pymokken/blob/main/scalability_coefs.py | ||
| # under the MIT license: | ||
|
|
||
| # Copyright (c) 2025, Michael Hardy. All rights reserved. | ||
|
|
||
| # Permission is hereby granted, free of charge, to any person obtaining a | ||
| # copy of this software and associated documentation files (the | ||
| # “Software”), to deal in the Software without restriction, including | ||
| # without limitation the rights to use, copy, modify, merge, publish, | ||
| # distribute, sublicense, and/or sell copies of the Software, and to | ||
| # permit persons to whom the Software is furnished to do so, subject to | ||
| # the following conditions: | ||
|
|
||
| # The above copyright notice and this permission notice shall be included | ||
| # in all copies or substantial portions of the Software. | ||
|
|
||
| # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS | ||
| # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
| # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | ||
| # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | ||
| # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
| # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | ||
| # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
|
|
||
|
|
||
| def scalability_coefs(X: Union[np.ndarray, pd.DataFrame]) -> Dict[str, Any]: | ||
| """ | ||
| Compute item-level scalability coefficients (Hi and Zi) using simplified approach, | ||
| which does not include standard errors or confidence intervals. | ||
| (Loevinger, 1948; Mokken, 1971; Molenaar and Sijtsma, 2000; Sijtsma and Molenaar, 2002) | ||
|
|
||
| This function computes: | ||
| - Hi: Item-level H coefficients (scalability of each item with rest of scale) | ||
| - Zi: Item-level Z-scores (standardized Hi coefficients) | ||
| - H: Overall scale H coefficient (scalar) | ||
| - Z: Overall scale Z-score (scalar) | ||
| - Hij: Item-pair H coefficients (matrix of shape (n_items, n_items)) | ||
| - Zij: Item-pair Z-scores (matrix of shape (n_items, n_items)) | ||
|
|
||
| Parameters | ||
| ---------- | ||
| X : array-like of shape (n_subjects, n_items) | ||
| Data matrix containing item responses. Should be integer-valued. | ||
| Missing values are handled by listwise deletion. | ||
|
|
||
| Returns | ||
| ------- | ||
| dict | ||
| Dictionary containing: | ||
| - 'Hi': Item-level H coefficients (array of length n_items) | ||
| - 'Zi': Item-level Z-scores (array of length n_items) | ||
| - 'H': Overall scale H coefficient (scalar) | ||
| - 'Z': Overall scale Z-score (scalar) | ||
| - 'Hij': Item-pair H coefficients (matrix of shape (n_items, n_items)) | ||
| - 'Zij': Item-pair Z-scores (matrix of shape (n_items, n_items)) | ||
|
|
||
| Examples | ||
| -------- | ||
| >>> import numpy as np | ||
| >>> X = np.random.randint(0, 4, (100, 5)) | ||
| >>> result = scalability_simple(X) | ||
| >>> print(f"Item coefficients: {result['Hi']}") | ||
| >>> print(f"Overall coefficient: {result['H']:.3f}") | ||
| """ | ||
| # Convert input to numpy array | ||
| if isinstance(X, pd.DataFrame): | ||
| X = X.values | ||
| X = np.asarray(X, dtype=float) | ||
|
|
||
| # Handle missing data with listwise deletion | ||
| if np.any(np.isnan(X)): | ||
| complete_cases = ~np.any(np.isnan(X), axis=1) | ||
| X = X[complete_cases] | ||
| if X.shape[0] < 5: | ||
| raise ValueError( | ||
| "Insufficient complete cases after removing missing data") | ||
|
|
||
| # Convert to integers | ||
| X = X.astype(int) | ||
|
|
||
| # Validate input | ||
| if X.ndim != 2: | ||
| raise ValueError("X must be a 2D array") | ||
| if X.shape[1] < 2: | ||
| raise ValueError("X must have at least 2 items") | ||
| if X.shape[0] < 5: | ||
| raise ValueError("X must have at least 5 subjects") | ||
|
|
||
| n_subjects, n_items = X.shape | ||
|
|
||
| # Check for zero variance, handle with listwise deletion | ||
| if np.any(np.var(X, axis=0) == 0): | ||
| complete_cases = ~np.any(np.var(X, axis=0) == 0, axis=1) | ||
| X = X[complete_cases] | ||
| if X.shape[0] < 5: | ||
| raise ValueError( | ||
| "Insufficient complete cases after removing zero variance items") | ||
|
|
||
| # Compute H scaling (Loevinger, 1948; Mokken, 1971) using simple method | ||
| # Compute covariance matrices | ||
| S = np.cov(X, rowvar=False) # Item covariance matrix | ||
| X_sorted = np.sort(X, axis=0) # Sort each item independently | ||
| Smax = np.cov(X_sorted, rowvar=False) # Maximum possible covariance | ||
|
|
||
| # Compute Hij matrix (item-pair coefficients) | ||
| Hij = S / Smax | ||
| np.fill_diagonal(Hij, 0) # Zero out diagonal | ||
|
|
||
| # Compute Hi coefficients (item-level) | ||
| S_offdiag = S.copy() | ||
| Smax_offdiag = Smax.copy() | ||
| np.fill_diagonal(S_offdiag, 0) | ||
| np.fill_diagonal(Smax_offdiag, 0) | ||
|
|
||
| # for future reference: | ||
| Hij = np.divide( | ||
| S_offdiag, | ||
| Smax_offdiag, | ||
| out=np.zeros_like(S_offdiag), | ||
| where=Smax_offdiag != 0) | ||
| Hi = np.sum(Hij, axis=1) | ||
|
|
||
| # Compute overall H coefficient | ||
| H = np.sum(S_offdiag) / np.sum(Smax_offdiag) | ||
|
|
||
| # Compute Z-standardized scaling using simple method | ||
| # (Mokken, 1971; Molenaar and Sijtsma, 2000; Sijtsma and Molenaar, 2002) | ||
| # Only appropriate for testing lowerbound = 0. | ||
| # Item variances, unweighted and unbiased | ||
| var_vec = np.var(X, axis=0, ddof=1) | ||
| Sij = np.outer(var_vec, var_vec) # Outer product of variances | ||
|
|
||
| # Item-pair Z-standardized scaling coefficients | ||
| Zij = np.divide(S * np.sqrt(n_subjects - 1), np.sqrt(Sij), | ||
| out=np.zeros_like(S_offdiag), where=Sij != 0) | ||
| np.fill_diagonal(Zij, 0) # Zero diagonal | ||
|
|
||
| # Item-level Z-standardized scaling | ||
| Sij_for_z = Sij.copy() | ||
| np.fill_diagonal(Sij_for_z, 0) | ||
|
|
||
| Zi = np.divide( | ||
| np.sum(S_offdiag, axis=1) * np.sqrt(n_subjects - 1), | ||
| np.sqrt(np.sum(Sij_for_z, axis=1)), | ||
| out=np.zeros(n_items), | ||
| where=np.sum(Sij_for_z, axis=1) != 0, | ||
| ) | ||
|
|
||
| # Overall Z-standardized scaling (divided by 2 because the matrix is | ||
| # symmetric, I think) | ||
| sum_S = np.sum(S_offdiag) / 2.0 | ||
| sum_Sij = np.sum(Sij_for_z) / 2.0 | ||
| Z = (sum_S * np.sqrt(n_subjects - 1)) / \ | ||
| np.sqrt(sum_Sij) if sum_Sij != 0 else 0.0 | ||
|
|
||
| return {"Hi": Hi, "Zi": Zi, "H": H, "Z": Z, "Hij": Hij, "Zij": Zij} | ||
|
|
||
|
|
||
| def raw_item_total_correlations(X: np.ndarray) -> List[float]: | ||
| total = X.sum(axis=1) | ||
| Xc = X - X.mean(axis=0) | ||
| Tc = total - total.mean() | ||
| numer = (Xc * Tc[:, None]).sum(axis=0) | ||
| denom = np.sqrt((Xc**2).sum(axis=0) * (Tc**2).sum()) | ||
| raw_r = numer / denom | ||
| return raw_r.tolist() | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| benchmark: str = "lite" | ||
| scenario: str = "gsm" | ||
|
|
||
| # load information from long table | ||
| long_path: str = hf_hub_download( | ||
| repo_id="stair-lab/reeval_data_public", | ||
| repo_type="dataset", | ||
| filename="long.pkl") | ||
| with open(long_path, "rb") as f: | ||
| long: Any = pickle.load(f) | ||
| sub_long: pd.DataFrame = long[(long["benchmark"] == benchmark) & ( | ||
| long["scenario"] == scenario)].copy() | ||
| sub_long = sub_long.drop_duplicates( | ||
| subset=[ | ||
| "instance_id", | ||
| "train_trial_index", | ||
| "perturbation.name"]).reset_index( | ||
| drop=True) | ||
| sub_long = sub_long[["instance_id", | ||
| "train_trial_index", | ||
| "perturbation.name", | ||
| "input.text"]] | ||
|
|
||
| # load resmat | ||
| resmat_path: str = hf_hub_download( | ||
| repo_id="stair-lab/reeval_data_public", | ||
| repo_type="dataset", | ||
| filename="resmat.pkl") | ||
| with open(resmat_path, "rb") as f: | ||
| resmat: pd.DataFrame = pickle.load(f) | ||
| sub_mask: pd.Series = ( | ||
| resmat.columns.get_level_values("benchmark") == benchmark) & ( | ||
| resmat.columns.get_level_values("scenario") == scenario) | ||
| sub_resmat: pd.DataFrame = resmat.loc[:, sub_mask] | ||
| sub_resmat = sub_resmat.dropna(axis=0, how="all") | ||
| questions: pd.Index = sub_resmat.columns.get_level_values("input.text") | ||
| data: np.ndarray = sub_resmat.values | ||
| n_test_takers: int | ||
| n_questions: int | ||
| n_test_takers, n_questions = data.shape | ||
|
|
||
| # 1. tetrachoric correlation | ||
| print("1. tetrachoric correlation") | ||
| corr_matrix = np.zeros((n_questions, n_questions)) | ||
| for i in tqdm(range(n_questions)): | ||
| for j in range(i, n_questions): | ||
| r = tetrachoric_corr(data[:, i], data[:, j]) | ||
| corr_matrix[i, j] = corr_matrix[j, i] = r | ||
| tetrachoric = np.nanmean(corr_matrix, axis=1) | ||
|
|
||
| # 2. 2PL IRT discriminant | ||
| print("2. 2PL IRT discriminant") | ||
| device: str = "cuda" if torch.cuda.is_available() else "cpu" | ||
| data_tensor: torch.Tensor = torch.tensor(data, device=device) | ||
| z: torch.Tensor = torch.zeros( | ||
| n_questions, | ||
| requires_grad=True, | ||
| device=device) | ||
| a: torch.Tensor = torch.ones(n_questions, requires_grad=True, device=device) | ||
| optim: torch.optim.Optimizer = torch.optim.LBFGS( | ||
| [z, a], lr=0.1, max_iter=20, history_size=10, line_search_fn="strong_wolfe" | ||
| ) | ||
| thetas: torch.Tensor = torch.randn(150, n_test_takers, device=device) | ||
|
|
||
| def closure(): | ||
| optim.zero_grad() | ||
| probs = torch.sigmoid( | ||
| (thetas[:, :, None] + z[None, None, :]) * a[None, None, :]) | ||
| loss = -(Bernoulli(probs=probs).log_prob(data_tensor) | ||
| ).mean() + 0.01 * (a - 1).pow(2).mean() | ||
| loss.backward() | ||
| return loss | ||
|
|
||
| z, a = trainer([z, a], optim, closure) | ||
| a = a.detach().cpu().numpy() | ||
|
|
||
| # 3. scalability coefficients | ||
| print("3. scalability coefficients") | ||
| scalability_coeff_results: Dict[str, Any] = scalability_coefs(data) | ||
| scalability_coeff: np.ndarray = scalability_coeff_results["Zij"].mean(0) | ||
|
|
||
| # 4. item-total correlation | ||
| print("4. item-total correlation") | ||
| item_total_corr: List[float] = raw_item_total_correlations(data) | ||
|
|
||
| # merge the two data | ||
| validity_metrics: pd.DataFrame = pd.DataFrame( | ||
| { | ||
| "input.text": questions, | ||
| "tetrachoric": tetrachoric, | ||
| "2pl_irt_discriminant": a, | ||
| "scalability_coeff": scalability_coeff, | ||
| "item_total_corr": item_total_corr, | ||
| } | ||
| ) | ||
| merged: pd.DataFrame = validity_metrics.merge( | ||
| sub_long, on="input.text", how="inner") | ||
| merged = merged.where(merged.notna(), None) | ||
|
|
||
| # create dict, upload to HF | ||
| validity_dict: Dict[Tuple[str, Optional[str], int], Dict[str, float]] = { | ||
| (row["instance_id"], row["perturbation.name"], row["train_trial_index"]): { | ||
| "tetrachoric": row["tetrachoric"], | ||
| "2pl_irt_discriminant": row["2pl_irt_discriminant"], | ||
| "scalability_coeff": row["scalability_coeff"], | ||
| "item_total_corr": row["item_total_corr"], | ||
| } | ||
| for _, row in merged.iterrows() | ||
| } | ||
| cleaned_validity_dict: Dict[Tuple[str, Optional[str], int], Dict[str, float]] = { | ||
| (inst_id, None if pd.isna(perturb) else perturb, trial_idx): valid | ||
| for (inst_id, perturb, trial_idx), valid in validity_dict.items() | ||
| } | ||
| validity_df = ( | ||
| pd.DataFrame.from_dict(cleaned_validity_dict, orient="index") | ||
| .rename_axis(index=["instance_id", "perturbation", "train_trial_index"]) | ||
| .reset_index() | ||
| ) | ||
| buffer: io.BytesIO = io.BytesIO() | ||
| validity_df.to_parquet(buffer, index=False) | ||
| buffer.seek(0) | ||
|
|
||
| login() | ||
| api: HfApi = HfApi() | ||
| api.upload_file( | ||
| path_or_fileobj=buffer, | ||
| path_in_repo="validity.parquet", | ||
| repo_id="stair-lab/helm_display_validity", | ||
| repo_type="dataset", | ||
| ) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.