The package py_countreg is a collection of functions to estimate various regression models for count outcomes.
It is an ongoing project. More functionalities will come later.
Count Outcome Regressions
|
|-- Equi-Dispersion (Baseline)
| |
| `-- stdpoisson() : Standard Poisson
|
|-- Over-Dispersion
| |
| `-- negbinom2() : Negative Binomial (NB-2)
|
|-- Over- and Under-Dispersions
| |
| |-- genpoisson() : Generalized Poisson
| |
| `-- compoisson() : Conway-Maxwell Poisson
|
|-- Zero-Inflation
| |
| |-- hdlpoisson() : Hurdle Poisson
| |
| |-- hdlnegbin2() : Hurdle Negative Binomial (NB-2)
| |
| |-- zifpoisson() : Zero-Inflated Poisson
| |
| `-- zifnegbin2() : Zero-Inflated Negative Binomial (NB-2)
|
`-- Zero-Truncation
|
|-- ztrpoisson() : Zero-Truncated Poisson
|
|-- ztgpoisson() : Zero-Truncated Generalized Poisson
|
|-- ztcpoisson() : Zero-Truncated Conway-Maxwell Poisson
|
`-- ztrnegbin2() : Zero-Truncated Negative Binomial (NB-2)
WenSui Liu and Jimmy Cela (2008), Count Data Models in SAS, Proceedings SAS Global Forum 2008, paper 371-2008.