Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add blas/ext/base/wasm/dnanasum #6227

Open
wants to merge 2 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions lib/node_modules/@stdlib/blas/ext/base/dnanasum/manifest.json
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
{
"options": {
"task": "build"
"task": "build",
"wasm": false
},
"fields": [
{
Expand All @@ -27,6 +28,7 @@
"confs": [
{
"task": "build",
"wasm": false,
"src": [
"./src/main.c"
],
Expand All @@ -48,6 +50,7 @@
},
{
"task": "benchmark",
"wasm": false,
"src": [
"./src/main.c"
],
Expand All @@ -64,6 +67,7 @@
},
{
"task": "examples",
"wasm": false,
"src": [
"./src/main.c"
],
Expand All @@ -79,7 +83,8 @@
]
},
{
"task": "test",
"task": "build",
"wasm": true,
"src": [
"./src/main.c"
],
Expand Down
293 changes: 293 additions & 0 deletions lib/node_modules/@stdlib/blas/ext/base/wasm/dnanasum/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# dnanasum

> Calculate the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values.

<section class="usage">

## Usage

```javascript
var dnanasum = require( '@stdlib/blas/ext/base/wasm/dnanasum' );
```

#### dnanasum.main( N, x, strideX )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = dnanasum.main( x.length, x, 1 );
// returns 5.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **strideX**: stride length.

The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of absolute values ([_L1_ norm][l1norm]) for every other element:

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );

var sum = dnanasum.main( 4, x, 2 );
// returns 5.0
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

<!-- eslint-disable stdlib/capitalized-comments -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dnanasum.main( 4, x1, 2 );
// returns 9.0
```

#### dnanasum.ndarray( N, x, strideX, offsetX )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values and alternative indexing semantics.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = dnanasum.ndarray( x.length, x, 1, 0 );
// returns 5.0
```

The function has the following additional parameters:

- **offsetX**: starting index.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values ([_L1_ norm][l1norm]) for every other value in the strided array starting from the second value:

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dnanasum.ndarray( 4, x, 2, 1 );
// returns 9.0
```

* * *

### Module

#### dnanasum.Module( memory )

Returns a new WebAssembly [module wrapper][@stdlib/wasm/module-wrapper] instance which uses the provided WebAssembly [memory][@stdlib/wasm/memory] instance as its underlying memory.

<!-- eslint-disable node/no-sync -->

```javascript
var Memory = require( '@stdlib/wasm/memory' );

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});

// Create a BLAS routine:
var mod = new dnanasum.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();
```

#### dnanasum.Module.prototype.main( N, xp, sx )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values.

<!-- eslint-disable node/no-sync -->

```javascript
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var zeros = require( '@stdlib/array/zeros' );

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});

// Create a BLAS routine:
var mod = new dnanasum.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

// Define a vector data type:
var dtype = 'float64';

// Specify a vector length:
var N = 3;

// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;

// Write vector values to module memory:
mod.write( xptr, oneTo( N, dtype ) );

// Perform computation:
var v = mod.main( N, xptr, 1 );
// returns 6.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **xp**: input [`Float64Array`][@stdlib/array/float64] pointer (i.e., byte offset).
- **sx**: stride length.

#### dnanasum.Module.prototype.ndarray( N, xp, sx, ox )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values and alternative indexing semantics.

<!-- eslint-disable node/no-sync -->

```javascript
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var zeros = require( '@stdlib/array/zeros' );

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});

// Create a BLAS routine:
var mod = new dnanasum.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

// Define a vector data type:
var dtype = 'float64';

// Specify a vector length:
var N = 3;

// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;

// Write vector values to module memory:
mod.write( xptr, oneTo( N, dtype ) );

// Perform computation:
var v = mod.ndarray( N, xptr, 1, 0 );
// returns 6.0
```

The function has the following additional parameters:

- **ox**: starting index.

</section>

<!-- /.usage -->

<section class="notes">

* * *

## Notes

- If `N <= 0`, both functions return `0.0`.
- This package implements routines using WebAssembly. When provided arrays which are not allocated on a `dnanasum` module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using [`@stdlib/blas/ext/base/dnanasum`][@stdlib/blas/ext/base/dnanasum]. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in [`@stdlib/blas/ext/base/dnanasum`][@stdlib/blas/ext/base/dnanasum]. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other.

</section>

<!-- /.notes -->

<section class="examples">

* * *

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dnanasum = require( '@stdlib/blas/ext/base/wasm/dnanasum' );

var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );

var v = dnanasum.ndarray( x.length, x, 1, 0 );
console.log( v );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[l1norm]: https://en.wikipedia.org/wiki/Norm_%28mathematics%29

[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray

[@stdlib/array/float64]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/float64

[@stdlib/wasm/memory]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/wasm/memory

[@stdlib/wasm/module-wrapper]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/wasm/module-wrapper

[@stdlib/blas/ext/base/dnanasum]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/blas/ext/base/dnanasum

</section>

<!-- /.links -->
Loading