Skip to content

Commit

Permalink
Merge pull request #26 from su2code/develop
Browse files Browse the repository at this point in the history
Develop
  • Loading branch information
pcarruscag committed Aug 18, 2022
2 parents 5c63f8d + 7b97f10 commit 9ed80bd
Show file tree
Hide file tree
Showing 5 changed files with 69 additions and 163 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,11 @@
% POISSON_EQUATION)
SOLVER= INC_RANS
%
% Specify turbulent model (NONE, SA, SA_NEG, SST)
% Specify turbulent model (NONE, SA, SST)
KIND_TURB_MODEL= SA
%
% Specify transition model (NONE, LM, BC)
KIND_TRANS_MODEL= BC
FREESTREAM_TURBULENCEINTENSITY = 0.18
SA_OPTIONS= BCM
% Turbulence intensity I = u'/U
FREESTREAM_TURBULENCEINTENSITY = 0.0018
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
Expand Down
Binary file modified compressible_flow/Unsteady_NACA0012/restart_flow_00497.dat
Binary file not shown.
Binary file modified compressible_flow/Unsteady_NACA0012/restart_flow_00498.dat
Binary file not shown.
Binary file modified compressible_flow/Unsteady_NACA0012/restart_flow_00499.dat
Binary file not shown.
223 changes: 65 additions & 158 deletions compressible_flow/Unsteady_NACA0012/unsteady_naca0012.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -9,207 +9,114 @@
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
% SOLVER
%
% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)
%
SOLVER= RANS
%
% Specify turbulent model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
REF_DIMENSIONALIZATION= DIMENSIONAL
MATH_PROBLEM= DIRECT

% RESTART
%
% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
TIME_DOMAIN = YES
%
% Numerical Method for Unsteady simulation(NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL)
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
%
% Time Step for dual time stepping simulations (s)
TIME_STEP= 5e-4
%
% Maximum Number of physical time steps.
TIME_ITER= 2200
%
% Number of internal iterations (dual time method)
INNER_ITER= 50
%
% Restart after the transient phase has passed
RESTART_SOL = YES
%
% Specify unsteady restart iter
RESTART_ITER = 499
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
RESTART_SOL= YES
RESTART_ITER= 499

% COMPRESSIBLE FREE-STREAM
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.3
%
% Angle of attack (degrees, only for compressible flows)
AOA= 17.0
%
% De-Dimensionalization
REF_DIMENSIONALIZATION = DIMENSIONAL
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 293.0
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 1e+3
%
% Reynolds length (1 m by default)
FREESTREAM_PRESSURE= 101325.0
REYNOLDS_NUMBER= 1000.0
REYNOLDS_LENGTH= 1.0

% REFERENCE VALUES
%
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_ORIGIN_MOMENT_X= 0.25
REF_ORIGIN_MOMENT_Y= 0.00
REF_ORIGIN_MOMENT_Z= 0.00
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0

% BOUNDARY CONDITIONS
%
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= ( airfoil, 0.0)
%
% Farfield boundary marker(s) (NONE = no marker)
MARKER_FAR= ( farfield)
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( airfoil )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= (airfoil)
MARKER_HEATFLUX= ( airfoil, 0.0 )
MARKER_FAR= ( farfield )
MARKER_PLOTTING= ( airfoil )
MARKER_MONITORING= ( airfoil )

% DISCRETIZATION
%
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
TIME_DOMAIN= YES
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
TIME_STEP= 5e-4
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 20.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
%
% Linear solver for the implicit formulation (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-6
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5
%
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
% 1st, 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.5, 0.01 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
JST_SENSOR_COEFF= ( 0.5, 0.005 )
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
MUSCL_TURB= NO

% SOLUTION METHODS
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
TIME_DISCRE_TURB= EULER_IMPLICIT
CFL_NUMBER= 1e12
CFL_ADAPT= NO
LINEAR_SOLVER= FGMRES
LINEAR_SOLVER_ERROR= 0.1
LINEAR_SOLVER_ITER= 10

% INNER CONVERGENCE
%
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Field to apply Cauchy Criterion to
INNER_ITER= 10
CONV_FIELD= REL_RMS_DENSITY
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -3
CONV_STARTITER= 0

% TIME CONVERGENCE
%
%% Time convergence monitoring
WINDOW_CAUCHY_CRIT = YES
%
% List of time convergence fields
CONV_WINDOW_FIELD = (TAVG_DRAG, TAVG_LIFT)
TIME_ITER= 2000
%
% Time Convergence Monitoring starts at Iteration WINDOW_START_ITER + CONV_WINDOW_STARTITER
CONV_WINDOW_STARTITER = 0
% Starting iteration and type for windowed-time-averaging
WINDOW_CAUCHY_CRIT= YES
WINDOW_START_ITER= 500
WINDOW_FUNCTION= HANN_SQUARE
%
% Monitored fields
CONV_WINDOW_FIELD= ( TAVG_DRAG, TAVG_LIFT )
% Time Convergence monitoring starts at iteration WINDOW_START_ITER + CONV_WINDOW_STARTITER
CONV_WINDOW_STARTITER= 0
% Epsilon to control the series convergence
CONV_WINDOW_CAUCHY_EPS = 1E-3
%
CONV_WINDOW_CAUCHY_EPS= 1E-4
% Number of elements to apply the criteria
CONV_WINDOW_CAUCHY_ELEMS = 10
%
% Starting iteration for windowed-time-averaging
WINDOW_START_ITER = 500
%
% Window used for reverse sweep. Options (SQUARE, HANN, HANN_SQUARE, BUMP)
WINDOW_FUNCTION = HANN_SQUARE
%
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
CONV_WINDOW_CAUCHY_ELEMS= 10

% INPUT/OUTPUT
%
HISTORY_WRT_FREQ_INNER=0
SCREEN_WRT_FREQ_INNER =1
HISTORY_WRT_FREQ_INNER= 0
SCREEN_WRT_FREQ_INNER= 100
%
% Mesh input file
MESH_FILENAME= unsteady_naca0012_mesh.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
% Restart input files
SOLUTION_FILENAME= restart_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= restart_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
TABULAR_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= 0_history
%
% Output file restart flow
% Output restart files
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
% Output file names
VOLUME_FILENAME= flow
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
TABULAR_FORMAT= CSV
CONV_FILENAME= history
%
SCREEN_OUTPUT= ( TIME_ITER, INNER_ITER, RMS_DENSITY, REL_RMS_DENSITY, DRAG, LIFT, CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT )
HISTORY_OUTPUT= ( TIME_ITER, INNER_ITER, REL_RMS_RES, RMS_RES, AERO_COEFF, TAVG_AERO_COEFF, CAUCHY )
%
SCREEN_OUTPUT=(TIME_ITER, INNER_ITER, DRAG, LIFT, RMS_DENSITY, REL_RMS_DENSITY, CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT)
HISTORY_OUTPUT=(ITER,REL_RMS_RES,RMS_RES, AERO_COEFF,TAVG_AERO_COEFF, CAUCHY)
%
OUTPUT_FILES= ( RESTART, PARAVIEW )
OUTPUT_WRT_FREQ= ( 1, 1 )

0 comments on commit 9ed80bd

Please sign in to comment.