Skip to content

Commit

Permalink
Open source core (= non-training) AutoBNN libraries by moving them to
Browse files Browse the repository at this point in the history
tfp/python/experimental/autobnn.

PiperOrigin-RevId: 589114000
  • Loading branch information
ThomasColthurst authored and tensorflower-gardener committed Dec 8, 2023
1 parent 2bc58ba commit abd1a1e
Show file tree
Hide file tree
Showing 18 changed files with 2,647 additions and 0 deletions.
227 changes: 227 additions & 0 deletions tensorflow_probability/python/experimental/autobnn/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
# Copyright 2023 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# Code for AutoBNN. See README.md for more information.

# Placeholder: py_library
# Placeholder: py_test

licenses(["notice"])

package(
# default_applicable_licenses
default_visibility = ["//visibility:public"],
)

py_library(
name = "bnn",
srcs = ["bnn.py"],
deps = [
":likelihoods",
# flax:core dep,
# jax dep,
# jaxtyping dep,
"//tensorflow_probability/python/distributions:distribution.jax",
],
)

py_test(
name = "bnn_test",
srcs = ["bnn_test.py"],
deps = [
":bnn",
# absl/testing:absltest dep,
# google/protobuf:use_fast_cpp_protos dep,
# jax dep,
"//tensorflow_probability:jax",
"//tensorflow_probability/python/distributions:lognormal.jax",
"//tensorflow_probability/python/distributions:normal.jax",
],
)

py_library(
name = "kernels",
srcs = ["kernels.py"],
deps = [
":bnn",
# flax dep,
# flax:core dep,
# jax dep,
"//tensorflow_probability/python/distributions:lognormal.jax",
"//tensorflow_probability/python/distributions:normal.jax",
"//tensorflow_probability/python/distributions:student_t.jax",
"//tensorflow_probability/python/distributions:uniform.jax",
],
)

py_test(
name = "kernels_test",
srcs = ["kernels_test.py"],
deps = [
":kernels",
":util",
# absl/testing:absltest dep,
# absl/testing:parameterized dep,
# google/protobuf:use_fast_cpp_protos dep,
# jax dep,
"//tensorflow_probability/python/distributions:lognormal.jax",
],
)

py_library(
name = "likelihoods",
srcs = ["likelihoods.py"],
deps = [
# flax:core dep,
# jax dep,
# jaxtyping dep,
"//tensorflow_probability:jax",
"//tensorflow_probability/python/bijectors:softplus.jax",
"//tensorflow_probability/python/distributions:distribution.jax",
"//tensorflow_probability/python/distributions:inflated.jax",
"//tensorflow_probability/python/distributions:logistic.jax",
"//tensorflow_probability/python/distributions:lognormal.jax",
"//tensorflow_probability/python/distributions:negative_binomial.jax",
"//tensorflow_probability/python/distributions:normal.jax",
"//tensorflow_probability/python/distributions:transformed_distribution.jax",
],
)

py_test(
name = "likelihoods_test",
srcs = ["likelihoods_test.py"],
deps = [
":likelihoods",
# absl/testing:absltest dep,
# absl/testing:parameterized dep,
# jax dep,
],
)

py_library(
name = "models",
srcs = ["models.py"],
deps = [
":bnn",
":bnn_tree",
":kernels",
":likelihoods",
":operators",
# jax dep,
],
)

py_test(
name = "models_test",
srcs = ["models_test.py"],
shard_count = 3,
deps = [
":likelihoods",
":models",
":operators",
# absl/testing:absltest dep,
# absl/testing:parameterized dep,
# jax dep,
],
)

py_library(
name = "operators",
srcs = ["operators.py"],
deps = [
":bnn",
":likelihoods",
# flax:core dep,
# jax dep,
"//tensorflow_probability:jax",
"//tensorflow_probability/python/bijectors:chain.jax",
"//tensorflow_probability/python/bijectors:scale.jax",
"//tensorflow_probability/python/bijectors:shift.jax",
"//tensorflow_probability/python/distributions:beta.jax",
"//tensorflow_probability/python/distributions:dirichlet.jax",
"//tensorflow_probability/python/distributions:half_normal.jax",
"//tensorflow_probability/python/distributions:normal.jax",
"//tensorflow_probability/python/distributions:transformed_distribution.jax",
],
)

py_test(
name = "operators_test",
srcs = ["operators_test.py"],
deps = [
":kernels",
":operators",
":util",
# absl/testing:absltest dep,
# absl/testing:parameterized dep,
# google/protobuf:use_fast_cpp_protos dep,
# jax dep,
# numpy dep,
"//tensorflow_probability/python/distributions:distribution.jax",
],
)

py_library(
name = "bnn_tree",
srcs = ["bnn_tree.py"],
deps = [
":bnn",
":kernels",
":operators",
":util",
# flax:core dep,
# jax dep,
],
)

py_test(
name = "bnn_tree_test",
timeout = "long",
srcs = ["bnn_tree_test.py"],
shard_count = 3,
deps = [
":bnn_tree",
":kernels",
# absl/testing:absltest dep,
# absl/testing:parameterized dep,
# flax dep,
# google/protobuf:use_fast_cpp_protos dep,
# jax dep,
],
)

py_library(
name = "util",
srcs = ["util.py"],
deps = [
":bnn",
# jax dep,
# numpy dep,
# scipy dep,
"//tensorflow_probability/python/distributions:distribution.jax",
],
)

py_test(
name = "util_test",
srcs = ["util_test.py"],
deps = [
":kernels",
":util",
# google/protobuf:use_fast_cpp_protos dep,
# jax dep,
# numpy dep,
"//tensorflow_probability/python/internal:test_util",
],
)
25 changes: 25 additions & 0 deletions tensorflow_probability/python/experimental/autobnn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# AutoBNN

This library contains code to specify BNNs that correspond to various useful GP
kernels and assemble them into models using operators such as Addition,
Multiplication and Changepoint.

It is based on the ideas in the following papers:

* Lassi Meronen, Martin Trapp, Arno Solin. _Periodic Activation Functions
Induce Stationarity_. NeurIPS 2021.

* Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, Andy Neely.
_Expressive Priors in Bayesian Neural Networks: Kernel Combinations and
Periodic Functions_. UAI 2019.

* Feras A. Saad, Brian J. Patton, Matthew D. Hoffman, Rif A. Saurous,
Vikash K. Mansinghka. _Sequential Monte Carlo Learning for Time Series
Structure Discovery_. ICML 2023.


## Setup

AutoBNN has three additional dependencies beyond those used by the core
Tensorflow Probability package: flax, scipy and jaxtyping. These
can be installed by running `setup\_autobnn.sh`.
Loading

0 comments on commit abd1a1e

Please sign in to comment.