-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Open source core (= non-training) AutoBNN libraries by moving them to
tfp/python/experimental/autobnn. PiperOrigin-RevId: 589114000
- Loading branch information
1 parent
2bc58ba
commit abd1a1e
Showing
18 changed files
with
2,647 additions
and
0 deletions.
There are no files selected for viewing
227 changes: 227 additions & 0 deletions
227
tensorflow_probability/python/experimental/autobnn/BUILD
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# Copyright 2023 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
# Code for AutoBNN. See README.md for more information. | ||
|
||
# Placeholder: py_library | ||
# Placeholder: py_test | ||
|
||
licenses(["notice"]) | ||
|
||
package( | ||
# default_applicable_licenses | ||
default_visibility = ["//visibility:public"], | ||
) | ||
|
||
py_library( | ||
name = "bnn", | ||
srcs = ["bnn.py"], | ||
deps = [ | ||
":likelihoods", | ||
# flax:core dep, | ||
# jax dep, | ||
# jaxtyping dep, | ||
"//tensorflow_probability/python/distributions:distribution.jax", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "bnn_test", | ||
srcs = ["bnn_test.py"], | ||
deps = [ | ||
":bnn", | ||
# absl/testing:absltest dep, | ||
# google/protobuf:use_fast_cpp_protos dep, | ||
# jax dep, | ||
"//tensorflow_probability:jax", | ||
"//tensorflow_probability/python/distributions:lognormal.jax", | ||
"//tensorflow_probability/python/distributions:normal.jax", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "kernels", | ||
srcs = ["kernels.py"], | ||
deps = [ | ||
":bnn", | ||
# flax dep, | ||
# flax:core dep, | ||
# jax dep, | ||
"//tensorflow_probability/python/distributions:lognormal.jax", | ||
"//tensorflow_probability/python/distributions:normal.jax", | ||
"//tensorflow_probability/python/distributions:student_t.jax", | ||
"//tensorflow_probability/python/distributions:uniform.jax", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "kernels_test", | ||
srcs = ["kernels_test.py"], | ||
deps = [ | ||
":kernels", | ||
":util", | ||
# absl/testing:absltest dep, | ||
# absl/testing:parameterized dep, | ||
# google/protobuf:use_fast_cpp_protos dep, | ||
# jax dep, | ||
"//tensorflow_probability/python/distributions:lognormal.jax", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "likelihoods", | ||
srcs = ["likelihoods.py"], | ||
deps = [ | ||
# flax:core dep, | ||
# jax dep, | ||
# jaxtyping dep, | ||
"//tensorflow_probability:jax", | ||
"//tensorflow_probability/python/bijectors:softplus.jax", | ||
"//tensorflow_probability/python/distributions:distribution.jax", | ||
"//tensorflow_probability/python/distributions:inflated.jax", | ||
"//tensorflow_probability/python/distributions:logistic.jax", | ||
"//tensorflow_probability/python/distributions:lognormal.jax", | ||
"//tensorflow_probability/python/distributions:negative_binomial.jax", | ||
"//tensorflow_probability/python/distributions:normal.jax", | ||
"//tensorflow_probability/python/distributions:transformed_distribution.jax", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "likelihoods_test", | ||
srcs = ["likelihoods_test.py"], | ||
deps = [ | ||
":likelihoods", | ||
# absl/testing:absltest dep, | ||
# absl/testing:parameterized dep, | ||
# jax dep, | ||
], | ||
) | ||
|
||
py_library( | ||
name = "models", | ||
srcs = ["models.py"], | ||
deps = [ | ||
":bnn", | ||
":bnn_tree", | ||
":kernels", | ||
":likelihoods", | ||
":operators", | ||
# jax dep, | ||
], | ||
) | ||
|
||
py_test( | ||
name = "models_test", | ||
srcs = ["models_test.py"], | ||
shard_count = 3, | ||
deps = [ | ||
":likelihoods", | ||
":models", | ||
":operators", | ||
# absl/testing:absltest dep, | ||
# absl/testing:parameterized dep, | ||
# jax dep, | ||
], | ||
) | ||
|
||
py_library( | ||
name = "operators", | ||
srcs = ["operators.py"], | ||
deps = [ | ||
":bnn", | ||
":likelihoods", | ||
# flax:core dep, | ||
# jax dep, | ||
"//tensorflow_probability:jax", | ||
"//tensorflow_probability/python/bijectors:chain.jax", | ||
"//tensorflow_probability/python/bijectors:scale.jax", | ||
"//tensorflow_probability/python/bijectors:shift.jax", | ||
"//tensorflow_probability/python/distributions:beta.jax", | ||
"//tensorflow_probability/python/distributions:dirichlet.jax", | ||
"//tensorflow_probability/python/distributions:half_normal.jax", | ||
"//tensorflow_probability/python/distributions:normal.jax", | ||
"//tensorflow_probability/python/distributions:transformed_distribution.jax", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "operators_test", | ||
srcs = ["operators_test.py"], | ||
deps = [ | ||
":kernels", | ||
":operators", | ||
":util", | ||
# absl/testing:absltest dep, | ||
# absl/testing:parameterized dep, | ||
# google/protobuf:use_fast_cpp_protos dep, | ||
# jax dep, | ||
# numpy dep, | ||
"//tensorflow_probability/python/distributions:distribution.jax", | ||
], | ||
) | ||
|
||
py_library( | ||
name = "bnn_tree", | ||
srcs = ["bnn_tree.py"], | ||
deps = [ | ||
":bnn", | ||
":kernels", | ||
":operators", | ||
":util", | ||
# flax:core dep, | ||
# jax dep, | ||
], | ||
) | ||
|
||
py_test( | ||
name = "bnn_tree_test", | ||
timeout = "long", | ||
srcs = ["bnn_tree_test.py"], | ||
shard_count = 3, | ||
deps = [ | ||
":bnn_tree", | ||
":kernels", | ||
# absl/testing:absltest dep, | ||
# absl/testing:parameterized dep, | ||
# flax dep, | ||
# google/protobuf:use_fast_cpp_protos dep, | ||
# jax dep, | ||
], | ||
) | ||
|
||
py_library( | ||
name = "util", | ||
srcs = ["util.py"], | ||
deps = [ | ||
":bnn", | ||
# jax dep, | ||
# numpy dep, | ||
# scipy dep, | ||
"//tensorflow_probability/python/distributions:distribution.jax", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "util_test", | ||
srcs = ["util_test.py"], | ||
deps = [ | ||
":kernels", | ||
":util", | ||
# google/protobuf:use_fast_cpp_protos dep, | ||
# jax dep, | ||
# numpy dep, | ||
"//tensorflow_probability/python/internal:test_util", | ||
], | ||
) |
25 changes: 25 additions & 0 deletions
25
tensorflow_probability/python/experimental/autobnn/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# AutoBNN | ||
|
||
This library contains code to specify BNNs that correspond to various useful GP | ||
kernels and assemble them into models using operators such as Addition, | ||
Multiplication and Changepoint. | ||
|
||
It is based on the ideas in the following papers: | ||
|
||
* Lassi Meronen, Martin Trapp, Arno Solin. _Periodic Activation Functions | ||
Induce Stationarity_. NeurIPS 2021. | ||
|
||
* Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, Andy Neely. | ||
_Expressive Priors in Bayesian Neural Networks: Kernel Combinations and | ||
Periodic Functions_. UAI 2019. | ||
|
||
* Feras A. Saad, Brian J. Patton, Matthew D. Hoffman, Rif A. Saurous, | ||
Vikash K. Mansinghka. _Sequential Monte Carlo Learning for Time Series | ||
Structure Discovery_. ICML 2023. | ||
|
||
|
||
## Setup | ||
|
||
AutoBNN has three additional dependencies beyond those used by the core | ||
Tensorflow Probability package: flax, scipy and jaxtyping. These | ||
can be installed by running `setup\_autobnn.sh`. |
Oops, something went wrong.