We recommend to use our Docker at thachdt4. If you use Docker you can skip this installation part and read the "Run mitopore_workflow pipeline" part below.
Mitopore_workflow local version requires python3 and works on Unix liked environment. Simply install Python3 and run the code below(you may have to run it as a sudo user on Linux):
git clone [email protected]:thachnguyen/mitopore_workflow.git
cd mitopore_workflow/mitopore_local
python install.py
Install R version 4.x
https://docs.posit.co/resources/install-r-source/#specify-r-version
R packages:
- tidyverse
- yaml
- gridExtra
- stringr
- vcfR
R Bioconductor:
- EnsDb.Hsapiens.v86
- ShortRead
Mitopore workflow supports multiple fastq files. The user must store all the fastq files in a single fastq folder.
testdata_directory/fastq/sample1.fastq
testdata_directory/fastq/sample2.fastq
testdata_directory/fastq/sample3.fastq
Mitopore_workflow has two pipelines, user can run one of two command below. Depend on Python interpreter you may have to use python3 instead of python. We have a small test data on this repository.
docker run -v /test_data_absolute_path/on/your_machine:/mitopore_data/ -i thachdt4/mitopore_local:latest python /home/ag-rossi/projects/mitopore_workflow/mitopore_local/mitopore_snv.py
you have to change the /test_data_absolute_path/on/your_machine to the path where you store the data
docker run -v /test_data_absolute_path/on/your_machine:/mitopore_data/ -i thachdt4/mitopore_local:latest python /home/ag-rossi/projects/mitopore_workflow/mitopore_local/mitopore_indel.py
When you use Illumina data, preprocessing is not required so please use this command with Illumina flag
docker run -v /test_data_absolute_path/on/your_machine:/mitopore_data/ -i thachdt4/mitopore_local:latest python /home/ag-rossi/projects/mitopore_workflow/mitopore_local/mitopore_indel.py /mitopore_data/ illumina
you have to change the /test_data_absolute_path/on/your_machine to the path where you store the data
##### Optional parameters
Running parameters are preset in config.yaml.
#### Installation on local machine (for experienced user)
##### SNV calling
```console
python mitopore_snv.py testdata_directory_path
E.g. use "python mitopore_snv.py ../testdata" for our test data
python mitopore_indel.py testdata_directory_path
E.g. use "python mitopore_indel.py ../testdata" for our test data
When you use Illumina data, preprocessing is not required so please use this command with Illumina flag
python mitopore_snv.py testdata_directory_path illumina
mitopore_indel.py illumina E.g. use "python mitopore_indel.py ../testdata illumina" for our test data
Running parameters are preset in config.yaml.
The result is summarized in a single HTML file report.html in your testdata_directory. Other supplementary result files (graphical plots, BAM alignment files, coverage, and mapping reports ...)are in the Results folder and Analysis folder.
* CPU: 2.0 GHz (64bits) 2 cores or higher
* Memory: 24 GB or higher
* Diskdrive: 100 GB free space
* Linux (64 bits) or MacOS.
All dependent packages are described in install.py files