Skip to content

[CSIAR Inspire Challenge 2018] Using Machine Learning to improve agriculture in India

Notifications You must be signed in to change notification settings

theartist007/Agrimine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Agrimine

[CSIAR Inspire Challenge 2018] Using Machine Learning to improve agriculture in India

Data

  1. Rainfall - Raw Rainfall Data (From http://maharain.gov.in/)
  2. Temperature_pandas - Raw Temperature Data (From https://www.timeanddate.com/ and http://www.indiawaterportal.org/met_data/)
  3. Pressure_pandas - Raw Pressure Data (From https://www.timeanddate.com/)
  4. CropProject - https://data.gov.in/catalog/district-wise-season-wise-crop-production-statistics
  5. Rainfall_pandas_labels - Labelled Rainfall Data
  6. Temperature_pandas_labels - Labelled Temperature Data
  7. Pressure_pandas_labels - Labelled Pressure Data
  8. Drought_10_pandas_labels - Drought Training Data Labels
  9. Crop Labels - Crop Productivity Labels
  10. Classifier1Data - Integrated Data for Classifier 1
  11. Classifier2Data - Integrated Data for Classifier 2

Code

  1. scrape.py - Scraping data off timeanddate (For Temperature and Pressure)
  2. RainfallConversion.py - Labeling temperature data
  3. TemperatureConversion.py - Labeling temperature data
  4. PressureConversion.py - Labeling temperature data
  5. data.py - Importing raw data
  6. datalabels.py - Importing labeled data
  7. datacrops.py - Importing crop data, and labeling it
  8. DroughtYN.py - Finding Drought Labels
  9. IntegrationC1.py - Integrating data for Classifier 1
  10. C1ID3/SVCRBF/RFC.py - Classifier 1
  11. IntegrationC2.py - Integrating data for Classifier 2
  12. C2ID3/SVCRBF/RFC.py - Classifier 2

Results - Confusion Matrices for both classifiers

About

[CSIAR Inspire Challenge 2018] Using Machine Learning to improve agriculture in India

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages