[CSIAR Inspire Challenge 2018] Using Machine Learning to improve agriculture in India
- Rainfall - Raw Rainfall Data (From http://maharain.gov.in/)
- Temperature_pandas - Raw Temperature Data (From https://www.timeanddate.com/ and http://www.indiawaterportal.org/met_data/)
- Pressure_pandas - Raw Pressure Data (From https://www.timeanddate.com/)
- CropProject - https://data.gov.in/catalog/district-wise-season-wise-crop-production-statistics
- Rainfall_pandas_labels - Labelled Rainfall Data
- Temperature_pandas_labels - Labelled Temperature Data
- Pressure_pandas_labels - Labelled Pressure Data
- Drought_10_pandas_labels - Drought Training Data Labels
- Crop Labels - Crop Productivity Labels
- Classifier1Data - Integrated Data for Classifier 1
- Classifier2Data - Integrated Data for Classifier 2
- scrape.py - Scraping data off timeanddate (For Temperature and Pressure)
- RainfallConversion.py - Labeling temperature data
- TemperatureConversion.py - Labeling temperature data
- PressureConversion.py - Labeling temperature data
- data.py - Importing raw data
- datalabels.py - Importing labeled data
- datacrops.py - Importing crop data, and labeling it
- DroughtYN.py - Finding Drought Labels
- IntegrationC1.py - Integrating data for Classifier 1
- C1ID3/SVCRBF/RFC.py - Classifier 1
- IntegrationC2.py - Integrating data for Classifier 2
- C2ID3/SVCRBF/RFC.py - Classifier 2