-
Notifications
You must be signed in to change notification settings - Fork 10
Kernel principal component analysis using the Eigen linear algebra library [machine learning]
License
timnugent/kpca-eigen
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Kernel PCA using the Eigen linear algebra library ------------------------------------------------- Tim Nugent 2014 Uses the covariance/eigendecomposition method: http://en.wikipedia.org/wiki/Principal_component_analysis#Computing_PCA_using_the_covariance_method Current kernels are RBF and polynomial. Build ----- Install Eigen, e.g.: sudo apt-get install libeigen3-dev or download from http://eigen.tuxfamily.org/. Make sure the include path is set right in the Makefile. Compile with 'make'. Run --- Run with 'make test', or: bin/kpca Input file format is a comma delimited n X p data matrix (n observations, p variables), e.g.: 32.0,26.0,51.0,12.0 17.0,13.0,34.0,35.0 10.0,94.0,83.0,45.0 3.0,72.0,72.0,67.0 10.0,63.0,35.0,34.0 Output ------ If R is installed, see the following plots: wikipedia_data.png wikipedia_RBF_transformed.png wikipedia_Polynomial_transformed.png stdout: Regular PCA (data/test.data): Input data: 32 26 51 12 17 13 34 35 10 94 83 45 3 72 72 67 10 63 35 34 Centered data: 17.6 -27.6 -4 -26.6 2.6 -40.6 -21 -3.6 -4.4 40.4 28 6.4 -11.4 18.4 17 28.4 -4.4 9.4 -20 -4.6 Covariance matrix: 97.04 -204.04 -70.8 -161.84 -204.04 893.84 443.8 323.64 -70.8 443.8 386 187.2 -161.84 323.64 187.2 317.84 Eigenvalues: 1347.01 211.581 135.402 0.721744 Eigenvectors: 0.201491 -0.426243 0.157741 -0.867662 -0.790673 -0.243348 -0.537975 -0.161871 -0.450549 -0.390018 0.770297 0.227011 -0.362276 0.779092 0.30388 -0.411616 Sorted eigenvalues: PC 1: Eigenvalue: 1347.01 (0.795 of variance, cumulative = 0.795) PC 2: Eigenvalue: 211.581 (0.125 of variance, cumulative = 0.920) PC 3: Eigenvalue: 135.402 (0.080 of variance, cumulative = 1.000) PC 4: Eigenvalue: 0.721744 (0.000 of variance, cumulative = 1.000) Sorted eigenvectors: 0.201491 -0.426243 0.157741 -0.867662 -0.790673 -0.243348 -0.537975 -0.161871 -0.450549 -0.390018 0.770297 0.227011 -0.362276 0.779092 0.30388 -0.411616 Transformed data: -41.4351 -30.5086 33.9921 -25.3357 -34.8517 3.59798 32.5138 -23.5428 -126.006 -24.4494 28.6171 -23.5733 -113.036 5.31814 37.5604 -25.4912 -75.8841 -6.75481 4.97735 -24.924 Kernel PCA (data/wikipedia.data) - RBF kernel, gamma = 0.001: Sorted eigenvalues: PC 1: Eigenvalue: 145.3 (0.931 of variance, cumulative = 0.931) PC 2: Eigenvalue: 6.68255 (0.043 of variance, cumulative = 0.974) PC 3: Eigenvalue: 3.66329 (0.023 of variance, cumulative = 0.998) PC 4: Eigenvalue: 0.141679 (0.001 of variance, cumulative = 0.999) PC 5: Eigenvalue: 0.133171 (0.001 of variance, cumulative = 0.999) PC 6: Eigenvalue: 0.0729222 (0.000 of variance, cumulative = 1.000) ... PC 99: Eigenvalue: 8.36113e-18 (0.000 of variance, cumulative = 1.000) PC 100: Eigenvalue: 8.36113e-18 (0.000 of variance, cumulative = 1.000) Written file data/eigenvectors_RBF_data.csv Written file data/transformed_RBF_data.csv Kernel PCA (data/wikipedia.data) - Polynomial kernel, order = 2, constant = 1: Sorted eigenvalues: PC 1: Eigenvalue: 176542 (0.548 of variance, cumulative = 0.548) PC 2: Eigenvalue: 79802.3 (0.248 of variance, cumulative = 0.795) PC 3: Eigenvalue: 54358.5 (0.169 of variance, cumulative = 0.964) PC 4: Eigenvalue: 7483.66 (0.023 of variance, cumulative = 0.987) PC 5: Eigenvalue: 4058.28 (0.013 of variance, cumulative = 1.000) ... PC 77: Eigenvalue: 9.0432e-17 (0.000 of variance, cumulative = 1.000) PC 78: Eigenvalue: 9.0432e-17 (0.000 of variance, cumulative = 1.000) Written file data/eigenvectors_Polynomial_data.csv Written file data/transformed_Polynomial_data.csv Plotting data using R... src/plot.R Bugs ---- [email protected]
About
Kernel principal component analysis using the Eigen linear algebra library [machine learning]
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published