Skip to content

tntek/G2KD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

G2KD

Code (pytorch) for 'G2KD: Gradual Geometry-guided Knowledge Distillation for Source Data-free Domain Adaptation' on Digit, Office-31, Office-Home, VisDA-C.

Preliminary

You need to download the Office-31, Office-Home, VisDA-C dataset, modify the path of images in each '.txt' under the folder './data/'.

Concerning the Digits dsatasets, the code will automatically download three digit datasets (i.e., MNIST, USPS, and SVHN) in './digit/data/'.

The experiments are conducted on one GPU (NVIDIA RTX TITAN).

  • python == 3.7.3
  • pytorch ==1.6.0
  • torchvision == 0.7.0

Prepare pretrain model for VIT

We choose R50-ViT-B_16 as our encoder.

wget https://storage.googleapis.com/vit_models/imagenet21k/R50+ViT-B_16.npz 
mkdir ./model/vit_checkpoint/imagenet21k 
mv R50+ViT-B_16.npz ./model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz

Training and evaluation

  1. First training model on the source data, Office-31 dataset on Resnet is shown here.

~/anaconda3/bin/python g2kd_source.py --trte val --output g2kd2020r0/source/ --da uda --gpu_id 0 --dset office --max_epoch 100 --s 0 --seed 2020

  1. Then adapting source model to target domain, with only the unlabeled target data.

~/anaconda3/bin/python g2kd_target.py --cls_par 0.05 --da uda --dset office --gpu_id 0 --s 0 --t 1 --output_src g2kd2020r0/source/ --output g2kd2020r0/target_mix/ --seed 2020

Results

The results of g2kd is display under the folder './G2KD_Res/object/results/accuracy/'.

Acknowledgement

The codes are based on SHOT (ICML 2020, also source-free).

Contact

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published