The code and model will be uploaded in the next few days.
This is a tensorflow re-implementation of Feature Pyramid Networks for Object Detection.
This project is based on Faster-RCNN, and completed by YangXue and YangJirui.
Models | mAP | sheep | horse | bicycle | bottle | cow | sofa | bus | dog | cat | person | train | diningtable | aeroplane | car | pottedplant | tvmonitor | chair | bird | boat | motorbike |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Faster-RCNN resnet50_v1 | 75.16 | 74.08 | 89.27 | 80.27 | 55.74 | 83.38 | 69.35 | 85.13 | 88.80 | 91.42 | 81.17 | 81.71 | 62.74 | 78.65 | 86.86 | 47.00 | 76.71 | 50.29 | 79.05 | 60.51 | 80.96 |
Faster-RCNN resnet101_v1 | 77.03 | 79.68 | 89.33 | 83.89 | 59.41 | 85.68 | 76.59 | 84.23 | 88.50 | 88.50 | 81.54 | 79.16 | 72.66 | 80.26 | 88.42 | 47.50 | 79.81 | 52.85 | 80.70 | 59.94 | 81.87 |
Faster-RCNN mobilenet_v2 | 50.36 | 46.68 | 70.45 | 67.43 | 25.69 | 53.60 | 46.26 | 58.95 | 37.62 | 43.97 | 67.67 | 61.35 | 52.14 | 56.54 | 75.02 | 24.47 | 49.89 | 27.76 | 38.04 | 38.20 | 65.46 |
FPN resnet50_v1 | 76.65 | 76.47 | 86.03 | 85.53 | 62.54 | 83.45 | 74.80 | 84.21 | 88.48 | 87.80 | 83.51 | 81.37 | 67.01 | 82.70 | 88.42 | 45.27 | 75.32 | 56.30 | 78.58 | 61.07 | 84.22 |
FPN resnet101_v1 | 78.57 | 77.42 | 88.05 | 85.51 | 64.81 | 84.97 | 79.87 | 86.32 | 89.52 | 88.64 | 84.14 | 84.28 | 73.07 | 83.54 | 89.14 | 47.39 | 76.14 | 57.60 | 81.60 | 64.56 | 84.95 |
FPN resnet101_v1+ | 78.26 | 76.77 | 86.31 | 85.87 | 67.66 | 80.52 | 73.83 | 85.07 | 89.15 | 90.59 | 84.22 | 80.67 | 73.53 | 83.70 | 89.49 | 51.49 | 79.88 | 56.61 | 82.89 | 61.54 | 85.38 |
FPN resnet101_v1++ | 78.49 | 78.23 | 87.36 | 83.61 | 64.31 | 85.99 | 80.40 | 84.62 | 90.33 | 88.72 | 84.04 | 83.64 | 73.81 | 84.20 | 88.62 | 48.71 | 79.45 | 56.84 | 82.37 | 61.49 | 82.96 |
Models | mAP | sheep | horse | bicycle | bottle | cow | sofa | bus | dog | cat | person | train | diningtable | aeroplane | car | pottedplant | tvmonitor | chair | bird | boat | motorbike |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Faster-RCNN resnet50_v1 | 73.09 | 72.11 | 85.63 | 77.74 | 55.82 | 81.19 | 67.34 | 82.44 | 85.66 | 87.34 | 77.49 | 79.13 | 62.65 | 76.54 | 84.01 | 47.90 | 74.13 | 50.09 | 76.81 | 60.34 | 77.47 |
Faster-RCNN resnet101_v1 | 74.63 | 76.35 | 86.18 | 79.87 | 58.73 | 83.4 | 74.75 | 80.03 | 85.4 | 86.55 | 78.24 | 76.07 | 70.89 | 78.52 | 86.26 | 47.80 | 76.34 | 52.14 | 78.06 | 58.90 | 78.04 |
Faster-RCNN mobilenet_v2 | 50.34 | 46.99 | 68.45 | 65.89 | 28.16 | 53.21 | 46.96 | 57.80 | 38.60 | 44.12 | 66.20 | 60.49 | 52.40 | 56.06 | 72.68 | 26.91 | 49.99 | 30.18 | 39.38 | 38.54 | 64.74 |
FPN resnet50_v1 | 74.26 | 73,27 | 82.23 | 82.99 | 61.27 | 80.59 | 72.73 | 81.37 | 85.26 | 84.76 | 80.33 | 77.43 | 65.31 | 79.18 | 85.78 | 46.47 | 73.10 | 55.99 | 76.11 | 59.80 | 81.19 |
FPN resnet101_v1 | 76.14 | 74.63 | 85.13 | 81.67 | 63.79 | 82.43 | 77.83 | 83.07 | 86.45 | 85.82 | 81.08 | 81.01 | 71.22 | 80.01 | 86.30 | 48.05 | 73.89 | 56.99 | 78.33 | 62.91 | 82.24 |
FPN resnet101_v1+ | 75.71 | 74.83 | 83.55 | 82.47 | 65.49 | 77.85 | 71.74 | 80.98 | 86.61 | 87.14 | 81.02 | 77.76 | 71.26 | 79.82 | 86.78 | 51.64 | 77.45 | 56.12 | 79.44 | 60.55 | 81.69 |
FPN resnet101_v1++ | 75.89 | 76.05 | 84.22 | 80.29 | 63.21 | 83.04 | 78.69 | 81.81 | 86.61 | 85.61 | 79.75 | 79.78 | 71.27 | 80.33 | 86.24 | 49.03 | 76.81 | 56.32 | 78.51 | 60.37 | 79.91 |
+: SHARE_NET=False
++: SHORT_SIDE_LEN=800, FAST_RCNN_MINIBATCH_SIZE=512
1、python3.5 (anaconda recommend)
2、cuda9.0 (If you want to use cuda8, please set CUDA9 = False in the cfgs.py file.)
3、opencv(cv2)
4、tfplot
5、tensorflow == 1.10
1、please download resnet50_v1、resnet101_v1 pre-trained models on Imagenet, put it to $PATH_ROOT/data/pretrained_weights.
2、please download trained model by this project, put it to $PATH_ROOT/output/trained_weights.
├── VOCdevkit
│ ├── VOCdevkit_train
│ ├── Annotation
│ ├── JPEGImages
│ ├── VOCdevkit_test
│ ├── Annotation
│ ├── JPEGImages
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace
Select a configuration file in the folder ($PATH_ROOT/libs/configs/) and copy its contents into cfgs.py, then download the corresponding weights.
cd $PATH_ROOT/tools
python inference.py --data_dir='/PATH/TO/IMAGES/'
--save_dir='/PATH/TO/SAVE/RESULTS/'
--GPU='0'
cd $PATH_ROOT/tools
python eval.py --eval_imgs='/PATH/TO/IMAGES/'
--annotation_dir='/PATH/TO/TEST/ANNOTATION/'
--GPU='0'
1、If you want to train your own data, please note:
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to line 76 of $PATH_ROOT/data/io/read_tfrecord.py
2、make tfrecord
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/VOCdevkit/VOCdevkit_train/'
--xml_dir='Annotation'
--image_dir='JPEGImages'
--save_name='train'
--img_format='.jpg'
--dataset='pascal'
3、train
cd $PATH_ROOT/tools
python train.py
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/CharlesShang/FastMaskRCNN
5、https://github.com/matterport/Mask_RCNN
6、https://github.com/msracver/Deformable-ConvNets