Skip to content

Commit

Permalink
fix inconsitency in jacobian(::Type{RotMatrix}, ::QuatRotation)
Browse files Browse the repository at this point in the history
  • Loading branch information
trahflow committed Feb 27, 2024
1 parent 2662b4f commit 5229fb1
Show file tree
Hide file tree
Showing 2 changed files with 44 additions and 41 deletions.
68 changes: 29 additions & 39 deletions src/derivatives.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,53 +26,43 @@ ith_partial{N}(X::SMatrix{9,N}, i) = @SMatrix([X[1,i] X[4,i] X[7,i];
jacobian(::Type{output_param}, R::input_param)
Returns the jacobian for transforming from the input rotation parameterization
to the output parameterization, centered at the value of R.
Note that
* if `input_param <: QuatRotation`, a unit quaternion is assumed and
the jacobian is with respect to the four parameters of a unit quaternion.
* if `input_param <: Quaternion`, a general (with arbitrary norm)
quaternion is assumed and the jacobian is with respect to a general quaternion
jacobian(R::rotation_type, X::AbstractVector)
Returns the jacobian for rotating the vector X by R.
"""
function jacobian(::Type{RotMatrix}, q::QuatRotation)
w = real(q.q)
x, y, z = imag_part(q.q)

# let q = s * qhat where qhat is a unit quaternion and s is a scalar,
# then R = RotMatrix(q) = RotMatrix(s * qhat) = s * RotMatrix(qhat)

# get R(q)
# R = q[:] # FIXME: broken with StaticArrays 0.4.0 due to https://github.com/JuliaArrays/StaticArrays.jl/issues/128
R = SVector(Tuple(q))

# solve d(s*R)/dQ (because its easy)
dsRdQ = @SMatrix [ 2*w 2*x -2*y -2*z ;
2*z 2*y 2*x 2*w ;
-2*y 2*z -2*w 2*x ;

-2*z 2*y 2*x -2*w ;
2*w -2*x 2*y -2*z ;
2*x 2*w 2*z 2*y ;

2*y 2*z 2*w 2*x ;
-2*x -2*w 2*z 2*y ;
2*w -2*x -2*y 2*z ]

# get s and dsdQ
# s = 1
dsdQ = @SVector [2*w, 2*x, 2*y, 2*z]

# now R(q) = (s*R) / s
# so dR/dQ = (s * d(s*R)/dQ - (s*R) * ds/dQ) / s^2
# = (d(s*R)/dQ - R*ds/dQ) / s
function jacobian(::Type{RotMatrix}, q::Quaternion)
s = abs(q)
w = real(q)
x, y, z = imag_part(q)
qhat = SVector{4}(w/s, x/s, y/s, z/s) # unit quaternion

dRdqhat = _jacobian_unit_quat(qhat)

dqhatdq = (I(4) - qhat * qhat') / s # jacobian of normalization
dRdqhat * dqhatdq # total jacobian
end

# now R(q) = (R(s*q)) / s for scalar s, because RotMatrix(s * q) = s * RotMatrix(q)
#
# so dR/dQ = (dR(s*q)/dQ*s - R(s*q) * ds/dQ) / s^2
# = (dR(s*q)/dQ*s - s*R(q) * ds/dQ) / s^2
# = (dR(s*q)/dQ - R(q) * ds/dQ) / s

jac = dsRdQ - R * transpose(dsdQ)
jacobian(::Type{RotMatrix}, q::QuatRotation) = _jacobian_unit_quat(params(q))

# now reformat for output. TODO: is the the best expression?
# return Vec{4,Mat{3,3,T}}(ith_partial(jac, 1), ith_partial(jac, 2), ith_partial(jac, 3), ith_partial(jac, 4))

@inline function _jacobian_unit_quat(qhat::SVector{4})
# jacobian of vec(RotMatrix(QuatRotation(qhat, false)))
w, x, y, z = qhat
return @SMatrix [ 2*w 2*x -2*y -2*z ;
2*z 2*y 2*x 2*w ;
-2*y 2*z -2*w 2*x ;
-2*z 2*y 2*x -2*w ;
2*w -2*x 2*y -2*z ;
2*x 2*w 2*z 2*y ;
2*y 2*z 2*w 2*x ;
-2*x -2*w 2*z 2*y ;
2*w -2*x -2*y 2*z ]
end


Expand Down
17 changes: 15 additions & 2 deletions test/derivative_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,13 +11,26 @@ using ForwardDiff
@testset "Jacobian checks" begin

# Quaternion to rotation matrix
@testset "Jacobian (Quaternion -> RotMatrix)" begin
for i in 1:10 # do some repeats
q = rand(QuaternionF64) # a random quaternion, **not** normalized

# test jacobian to a Rotation matrix
R_jac = Rotations.jacobian(RotMatrix, q)
FD_jac = ForwardDiff.jacobian(x -> SVector{9}(QuatRotation(x[1], x[2], x[3], x[4])), # normalize
SVector(q.s, q.v1, q.v2, q.v3))

# compare
@test FD_jac R_jac
end
end
@testset "Jacobian (QuatRotation -> RotMatrix)" begin
for i in 1:10 # do some repeats
q = rand(QuatRotation) # a random quaternion
q = rand(QuatRotation) # a random quaternion (normalized)

# test jacobian to a Rotation matrix
R_jac = Rotations.jacobian(RotMatrix, q)
FD_jac = ForwardDiff.jacobian(x -> SVector{9}(QuatRotation(x[1], x[2], x[3], x[4])),
FD_jac = ForwardDiff.jacobian(x -> SVector{9}(QuatRotation(x[1], x[2], x[3], x[4], false)), # don't normalize
Rotations.params(q))

# compare
Expand Down

0 comments on commit 5229fb1

Please sign in to comment.