Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

randomized svd draft #3008

Draft
wants to merge 32 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 20 commits
Commits
Show all changes
32 commits
Select commit Hold shift + click to select a range
1f45245
randomized svd draft
hanbin973 Oct 3, 2024
e408ab3
modified api remove scipy
hanbin973 Oct 4, 2024
a176132
remove scipy
hanbin973 Oct 7, 2024
8c662c8
correct docstring and comments
hanbin973 Oct 7, 2024
aa13613
space remove
hanbin973 Oct 7, 2024
5bf405a
rng to random seed
hanbin973 Oct 8, 2024
6e415e5
add windows feature
hanbin973 Oct 8, 2024
45ac61e
output shape change when windows=wholegnome
hanbin973 Oct 11, 2024
2cdb9dd
make centre work with nodes
hanbin973 Oct 11, 2024
1f194aa
remove redundant options from internal functions
hanbin973 Oct 11, 2024
fdc5842
start at testing
petrelharp Oct 13, 2024
c0a2854
change variable name to n_* to num_*
hanbin973 Oct 13, 2024
667d60f
return range sketch matrix Q
hanbin973 Oct 13, 2024
36c10e9
fix random sketch option to handle None
hanbin973 Oct 13, 2024
0ac88b8
random_sketch needs windows specified
hanbin973 Oct 13, 2024
a6fa8ab
input checking for range_sketch to align with windows
hanbin973 Oct 13, 2024
791c7da
docstring change to reflect range_sketch
hanbin973 Oct 13, 2024
2f4ce2b
linting has a bug; when converting lambda to ordinary function defini…
hanbin973 Oct 14, 2024
be2f736
now output is a dataclass
hanbin973 Oct 17, 2024
bcbbcf6
docstring change
hanbin973 Oct 17, 2024
1a8ff7a
change variable name of PCAResult class
hanbin973 Oct 18, 2024
af16340
move internal function of PCA out
hanbin973 Oct 18, 2024
e81db15
function rearrangement
hanbin973 Oct 22, 2024
277cfc2
terminology change loaindgs -> factor
hanbin973 Nov 15, 2024
be715de
time resolved feature
hanbin973 Nov 16, 2024
d3e6c89
Update python/tskit/trees.py
hanbin973 Nov 17, 2024
49fe716
Update python/tskit/trees.py
hanbin973 Nov 17, 2024
d217fc7
Update python/tskit/trees.py
hanbin973 Nov 17, 2024
89e3b27
Update python/tskit/trees.py
hanbin973 Nov 17, 2024
81cbecf
remove comments; eigen_values -> eigenvalues
hanbin973 Nov 18, 2024
7ca6452
support for subset of samples and individuals in a tree
hanbin973 Nov 20, 2024
587409b
add time assertion
hanbin973 Dec 18, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
146 changes: 145 additions & 1 deletion python/tests/test_relatedness_vector.py
Original file line number Diff line number Diff line change
Expand Up @@ -460,7 +460,7 @@ def check_relatedness_vector(
return R


class TestExamples:
class TestRelatednessVector:

def test_bad_weights(self):
n = 5
Expand Down Expand Up @@ -737,3 +737,147 @@ def test_disconnected_non_sample_topology(self, centre):
ts2, internal_checks=True, centre=centre, do_nodes=False
)
np.testing.assert_array_almost_equal(D1, D2)


def pca(ts, windows, centre):
drop_dimension = windows is None
if drop_dimension:
windows = [0, ts.sequence_length]
Sigma = relatedness_matrix(ts=ts, windows=windows, centre=centre)
U, S, _ = np.linalg.svd(Sigma, hermitian=True)
if drop_dimension:
U = U[0]
S = S[0]
return U, S


def allclose_up_to_sign(x, y, **kwargs):
# check if two vectors are the same up to sign
x_const = np.isclose(np.std(x), 0)
y_const = np.isclose(np.std(y), 0)
if x_const or y_const:
if np.allclose(x, 0):
r = 1.0
else:
r = np.mean(x / y)
else:
r = np.sign(np.corrcoef(x, y)[0, 1])
return np.allclose(x, r * y, **kwargs)


def assert_pcs_equal(U, D, U_full, D_full, rtol=1e-05, atol=1e-08):
# check that the PCs in U, D occur in U_full, D_full
# accounting for sign and ordering
assert len(D) <= len(D_full)
assert U.shape[0] == U_full.shape[0]
assert U.shape[1] == len(D)
for k in range(len(D)):
u = U[:, k]
d = D[k]
(ii,) = np.where(np.isclose(D_full, d, rtol=rtol, atol=atol))
assert len(ii) > 0, f"{k}th singular value {d} not found in {D_full}."
found_it = False
for i in ii:
if allclose_up_to_sign(u, U_full[:, i], rtol=rtol, atol=atol):
found_it = True
break
assert found_it, f"{k}th singular vector {u} not found in {U_full}."


class TestPCA:

def verify_pca(self, ts, num_windows, n_components, centre):
if num_windows == 0:
windows = None
elif num_windows % 2 == 0:
windows = np.linspace(
0.2 * ts.sequence_length, 0.8 * ts.sequence_length, num_windows + 1
)
else:
windows = np.linspace(0, ts.sequence_length, num_windows + 1)
ts_U, ts_D = ts.pca(
windows=windows, n_components=n_components, centre=centre, random_seed=123
)
num_rows = ts.num_samples
if windows is None:
assert ts_U.shape == (num_rows, n_components)
assert ts_D.shape == (n_components,)
else:
assert ts_U.shape == (num_windows, num_rows, n_components)
assert ts_D.shape == (num_windows, n_components)
U, D = pca(ts=ts, windows=windows, centre=centre)
if windows is None:
np.testing.assert_allclose(ts_D, D[:n_components], atol=1e-8)
assert_pcs_equal(ts_U, ts_D, U, D)
else:
for w in range(num_windows):
np.testing.assert_allclose(ts_D[w], D[w, :n_components], atol=1e-8)
assert_pcs_equal(ts_U[w], ts_D[w], U[w], D[w])

def test_bad_windows(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
for bad_w in ([], [1]):
with pytest.raises(ValueError, match="Number of windows"):
ts.pca(n_components=2, windows=bad_w)
for bad_w in ([1, 0], [-3, 10]):
with pytest.raises(tskit.LibraryError, match="TSK_ERR_BAD_WINDOWS"):
ts.pca(n_components=2, windows=bad_w)

def test_bad_num_components(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
with pytest.raises(ValueError, match="Number of components"):
ts.pca(n_components=ts.num_samples + 1)
with pytest.raises(ValueError, match="Number of components"):
ts.pca(n_components=4, samples=[0, 1, 2])
with pytest.raises(ValueError, match="Number of components"):
ts.pca(n_components=4, individuals=[0, 1])

def test_indivs_and_samples(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
with pytest.raises(ValueError, match="Samples and individuals"):
ts.pca(n_components=2, samples=[0, 1, 2, 3], individuals=[0, 1, 2])

def test_modes(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
for bad_mode in ("site", "node"):
with pytest.raises(
tskit.LibraryError, match="TSK_ERR_UNSUPPORTED_STAT_MODE"
):
ts.pca(n_components=2, mode=bad_mode)

@pytest.mark.parametrize("n", [2, 3, 5, 15])
@pytest.mark.parametrize("centre", (True, False))
@pytest.mark.parametrize("num_windows", (0, 1, 2, 3))
@pytest.mark.parametrize("n_components", (1, 3))
def test_simple_sims(self, n, centre, num_windows, n_components):
ploidy = 1
nc = min(n_components, n * ploidy)
ts = msprime.sim_ancestry(
n,
ploidy=ploidy,
population_size=20,
sequence_length=100,
recombination_rate=0.01,
random_seed=12345,
)
self.verify_pca(ts, num_windows=num_windows, n_components=nc, centre=centre)
223 changes: 223 additions & 0 deletions python/tskit/trees.py
Original file line number Diff line number Diff line change
Expand Up @@ -8592,6 +8592,229 @@ def genetic_relatedness_vector(
)
return out

def pca(
self,
num_components: int,
windows: list = None,
samples: np.ndarray = None,
individuals: np.ndarray = None,
mode: str = "branch",
centre: bool = True,
iterated_power: int = 5,
num_oversamples: int = 10,
random_seed: int = None,
range_sketch: np.ndarray = None,
) -> (np.ndarray, np.ndarray, np.ndarray):
"""
Run randomized singular value decomposition (rSVD) to obtain principal
components.
API partially adopted from `scikit-learn`'s
`sklearn.decomposition.PCA.html`

By default, performs PCA for the samples, so output has one coordinate
for each sample), but alternatively either a list of sample IDs or a
list of individual IDs can be provided (but not both).

TODO: say exactly what is returned (and relationship to
:meth:`genetic_relatedness <.TreeSequence.genetic_relatedness>`).

TODO: say what algorithms are used.

:param int num_components: Number of principal components.
:param list windows: An increasing list of breakpoints between the windows
to compute the statistic in.
:param np.ndarray samples: Samples to perform PCA with.
:param np.ndarray individuals: Individuals to perform PCA with. Cannot specify
both `samples` and `individuals`.
:param str mode: A string giving the "type" of relatedness to be computed
(defaults to "branch"; see
:meth:`genetic_relatedness_vector
<.TreeSequence.genetic_relatedness_vector>`)
:param bool centre: Centre the genetic relatedness matrix.
:param int iterated_power: Number of power iteration of range finder.
:param int num_oversamples: Number of additional test vectors.
:param int random_seed: The random seed. If this is None, a random seed will
be automatically generated. Valid random seeds must be between 1 and
:math:`2^32 − 1`.
:param np.ndarray range_sketch: Sketch matrix for each window. Default is None.
:return: A class object with attributes U, D, Q and E.
petrelharp marked this conversation as resolved.
Show resolved Hide resolved
The principal component loadings are in U
and the principal values are in D.
Q is the range sketch array for each window.
E is the error bound of the singular values..
"""

if samples is None and individuals is None:
samples = self.samples()

if samples is not None and individuals is not None:
raise ValueError("Samples and individuals cannot be used at the same time")
elif samples is not None:
output_type = "node"
dim = len(samples)
else:
assert individuals is not None
output_type = "individual"
dim = len(individuals)

if range_sketch is not None:
if windows is not None:
assert range_sketch.shape[0] == len(windows) - 1
elif windows is None:
range_sketch = np.expand_dims(range_sketch, 0)

if num_components > dim:
raise ValueError(
"Number of components must be less than or equal to "
"the number of samples (or individuals, if specified)."
)

random_state = np.random.default_rng(random_seed)

def _rand_pow_range_finder(
operator,
operator_dim: int,
rank: int,
depth: int,
num_vectors: int,
rng: np.random.Generator,
range_sketch: np.ndarray = None,
) -> np.ndarray:
"""
Algorithm 9 in https://arxiv.org/pdf/2002.01387
"""
assert num_vectors >= rank > 0, "num_vectors should be larger than rank"
if range_sketch is None:
test_vectors = rng.normal(size=(operator_dim, num_vectors))
Q = test_vectors
else:
Q = range_sketch
for _ in range(depth):
Q = np.linalg.qr(Q).Q
Q = operator(Q)
Q = np.linalg.qr(Q).Q
return Q[:, :rank]

def _rand_svd(
operator,
operator_dim: int,
rank: int,
depth: int,
num_vectors: int,
rng: np.random.Generator,
range_sketch: np.ndarray = None,
) -> (np.ndarray, np.ndarray, np.ndarray, float):
"""
Algorithm 8 in https://arxiv.org/pdf/2002.01387
"""
assert num_vectors >= rank > 0
Q = _rand_pow_range_finder(
operator, operator_dim, num_vectors, depth, num_vectors, rng, range_sketch
)
C = operator(Q).T
U_hat, D, V = np.linalg.svd(C, full_matrices=False)
U = Q @ U_hat

error_factor = np.power(
1 + 4 * np.sqrt(2 * operator_dim / (rank - 1)),
1 / (2 * depth + 1)
)
error_bound = D[-1] * (1 + error_factor)
return U[:, :rank], D[:rank], V[:rank], Q, error_bound

def _genetic_relatedness_vector_individual(
petrelharp marked this conversation as resolved.
Show resolved Hide resolved
arr: np.ndarray,
centre: bool = True,
windows=None,
) -> np.ndarray:
ij = np.vstack(
[
[n, k]
for k, i in enumerate(individuals)
for n in self.individual(i).nodes
]
)
samples, sample_individuals = (
ij[:, 0],
ij[:, 1],
) # sample node index, individual of those nodes
x = (
arr - arr.mean(axis=0) if centre else arr
) # centering within index in rows
x = self.genetic_relatedness_vector(
W=x[sample_individuals],
windows=windows,
mode=mode,
centre=False,
nodes=samples,
)[0]

def bincount_fn(w):
return np.bincount(sample_individuals, w)

x = np.apply_along_axis(bincount_fn, axis=0, arr=x)
x = x - x.mean(axis=0) if centre else x # centering within index in cols

return x

def _genetic_relatedness_vector_node(
petrelharp marked this conversation as resolved.
Show resolved Hide resolved
arr: np.ndarray,
centre: bool = True,
windows=None,
) -> np.ndarray:
x = arr - arr.mean(axis=0) if centre else arr
x = self.genetic_relatedness_vector(
W=x, windows=windows, mode=mode, centre=False, nodes=samples
)[0]
x = x - x.mean(axis=0) if centre else x

return x

@dataclass
class PCAResult:
U: np.ndarray
D: np.ndarray
Q: np.ndarray
E: np.ndarray

drop_windows = windows is None
windows = self.parse_windows(windows)
num_windows = len(windows) - 1
if num_windows < 1:
raise ValueError("Number of windows must be at least 1.")

U = np.empty((num_windows, dim, num_components))
D = np.empty((num_windows, num_components))
Q = np.empty((num_windows, dim, num_components + num_oversamples))
E = np.empty(num_windows)
for i in range(num_windows):
this_window = windows[i : i + 2]
_f = (
_genetic_relatedness_vector_node
if output_type == "node"
else _genetic_relatedness_vector_individual
)

def _G(x):
return _f(x, centre=centre, windows=this_window) # NOQA: B023

U[i], D[i], _, Q[i], E[i] = _rand_svd(
operator=_G,
operator_dim=dim,
rank=num_components,
depth=iterated_power,
num_vectors=num_components + num_oversamples,
rng=random_state,
range_sketch=None if range_sketch is None else range_sketch[i],
)

if drop_windows:
U, D, Q = U[0], D[0], Q[0]

pca_result = PCAResult(U, D, Q, E)

return pca_result

def trait_covariance(self, W, windows=None, mode="site", span_normalise=True):
"""
Computes the mean squared covariances between each of the columns of ``W``
Expand Down
Loading