@@ -279,7 +279,7 @@ def _run_inference_large(self, **kwargs) -> None:
279
279
c2 = pm .InverseGamma ("c2" , 2 , 8 )
280
280
tau = pm .HalfCauchy ("tau" , beta = tau0 )
281
281
lam = pm .HalfCauchy ("lam" , beta = 1 , shape = (ndim , ndim ))
282
- A = pm .Normal ('A' , mu = A_prior_mu , sigma = tau * lam * \
282
+ A = pm .Normal ('A' , mu = A_prior_mu , sigma = tau * lam *
283
283
at .sqrt (c2 / (c2 + tau ** 2 * lam ** 2 )), shape = (ndim , ndim ))
284
284
285
285
# If noise covariance is provided, use it as a prior
@@ -438,14 +438,14 @@ def _run_inference_large_xs(self, **kwargs) -> None:
438
438
c2_A = pm .InverseGamma ("c2_A" , 2 , 1 )
439
439
tau_A = pm .HalfCauchy ("tau_A" , beta = tau0_A )
440
440
lam_A = pm .HalfCauchy ("lam_A" , beta = 1 , shape = (nX , nX ))
441
- Ah = pm .Normal ('Ah' , mu = A_prior_mu , sigma = tau_A * lam_A * \
441
+ Ah = pm .Normal ('Ah' , mu = A_prior_mu , sigma = tau_A * lam_A *
442
442
at .sqrt (c2_A / (c2_A + tau_A ** 2 * lam_A ** 2 )), shape = (nX , nX ))
443
443
444
444
tau0_B = (DB0 / (DB - DB0 )) * 0.1 / np .sqrt (N )
445
445
c2_B = pm .InverseGamma ("c2_B" , 2 , 1 )
446
446
tau_B = pm .HalfCauchy ("tau_B" , beta = tau0_B )
447
447
lam_B = pm .HalfCauchy ("lam_B" , beta = 1 , shape = (nS , nX ))
448
- Bh = pm .Normal ('Bh' , mu = 0 , sigma = tau_B * lam_B * \
448
+ Bh = pm .Normal ('Bh' , mu = 0 , sigma = tau_B * lam_B *
449
449
at .sqrt (c2_B / (c2_B + tau_B ** 2 * lam_B ** 2 )), shape = (nS , nX ))
450
450
451
451
if noise_cov_prior is not None :
0 commit comments