-
Notifications
You must be signed in to change notification settings - Fork 3
/
create_dense_diffusion_direction_image.cpp
406 lines (327 loc) · 10.4 KB
/
create_dense_diffusion_direction_image.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#include "header.h"
void create_dense_diffusion_direction_image(
int width,
int height,
int *diffusion_direction_image_arr,
int *diffusion_direction_alpha_arr,
double *sparse_diffusion_direction_theta_image_arr,
int *sparse_diffusion_direction_theta_alpha_arr,
double *dense_diffusion_direction_theta_image_arr
)
{
int i;
int j;
unsigned int pixel;
int i_radius;
int j_radius;
int i2;
int j2;
unsigned int pixel2;
double value;
double pixel_coeff_value;
double pixel2_coeff_value;
double b_value;
int radius= 1;
unsigned int k;
unsigned int row_ind;
unsigned int col_ind;
int alpha;
int alpha2;
int diffusion_direction_alpha;
double theta;
double theta2;
int diffusion_direction_alpha2;
/*
Ready to solve with suitesparse
*/
cholmod_common common;
cholmod_sparse *A;
cholmod_dense *x, *b, *residual;
double residual_norm;
double one[] = { 1, 0 }, minusone[] = { -1, 0 };
cholmod_l_start(&common);
size_t nrow = width*height ;
size_t ncol = width*height ;
/*
Initialize x and b
*/
x = cholmod_l_zeros(ncol, 1, CHOLMOD_REAL, &common);
b = cholmod_l_zeros(nrow, 1, CHOLMOD_REAL, &common);
/*
Allocate memory for the triplets
nzmax (maximum number of triplets) should be as low as possible
*/
size_t nnz_row = 5 ; //max number of non-zero entries on a row
size_t nzmax = nrow*nnz_row ;
cholmod_triplet *triplet = cholmod_l_allocate_triplet(nrow, ncol, nzmax, 0, CHOLMOD_REAL, &common);
if (triplet == nullptr) {
perror("cholmod_l_allocate_triplet");
abort();
}
LONG* triplet_i = (LONG *)(triplet->i);
LONG* triplet_j = (LONG *)(triplet->j);
double * triplet_x = (double *)(triplet->x);
/*
Fill matrix and right-hand side vector
*/
for ( i= 0 ; i< height ; i++ ) {
for ( j= 0 ; j< width ; j++ ) {
pixel= i*width+j;
/*
pixel represents the row in matrix A
We are looking at the linear equation for pixel
*/
/*
Let's see if pixel belongs to an area
where the diffusion should follow directionality
*/
diffusion_direction_alpha= diffusion_direction_alpha_arr[pixel];
if ( diffusion_direction_alpha == 0 ) {
/*
Pixel does not belongs to an area
where the diffusion should follow directionality
*/
/*
Do as if diffusion direction at pixel was known
*/
/*
Fill matrix and right-hand side vector
*/
value= 1.0;
if ( value != 0 ) {
if ( !(pixel >= 0 && pixel < nrow) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
if ( !(pixel >= 0 && pixel < ncol) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
triplet_i[triplet->nnz] = pixel;
triplet_j[triplet->nnz] = pixel;
triplet_x[triplet->nnz] = value;
triplet->nnz++;
}
value= 0.0;
if ( value != 0 ) {
((double *)(b->x))[pixel] = value;
}
/*
We are done for that pixel
*/
continue;
}
theta= sparse_diffusion_direction_theta_image_arr[pixel];
alpha= sparse_diffusion_direction_theta_alpha_arr[pixel];
/*
If alpha== 0, the diffusion direction is unknown
If alpha==255, the diffusion direction is known
and is equal to sparse_diffusion_direction_theta_image_arr[pixel]
*/
if ( alpha == 255 ) {
/*
Diffusion direction at pixel is known
*/
/*
Fill matrix and right-hand side vector
*/
value= 1.0;
if ( value != 0 ) {
if ( !(pixel >= 0 && pixel < nrow) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
if ( !(pixel >= 0 && pixel < ncol) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
triplet_i[triplet->nnz] = pixel;
triplet_j[triplet->nnz] = pixel;
triplet_x[triplet->nnz] = value;
triplet->nnz++;
}
value= theta;
if ( value != 0 ) {
((double *)(b->x))[pixel] = value;
}
/*
We are done for that pixel
*/
continue;
}
/*
If here,
diffusion direction at pixel is unknown
*/
/*
Fill matrix and right-hand side vector
*/
pixel_coeff_value= 0.0;
b_value= 0.0;
for ( i_radius= -radius ; i_radius<= +radius ; i_radius++ ) {
for ( j_radius= -radius ; j_radius<= +radius ; j_radius++ ) {
if ( !(abs(i_radius+j_radius)%2 == 1) )
continue;
i2= i+i_radius;
j2= j+j_radius;
pixel2= i2*width+j2;
/*
Check if neighboring pixel is out of bounds
*/
if ( i2 < 0 )
continue;
if ( i2 > height-1 )
continue;
if ( j2 < 0 )
continue;
if ( j2 > width-1 )
continue;
/*
Neighboring pixel is in bounds
*/
/*
Let's see if pixel2 belongs to an area
where the diffusion should follow directionality
*/
diffusion_direction_alpha2= diffusion_direction_alpha_arr[pixel2];
if ( diffusion_direction_alpha2 == 0 ) {
/*
Pixel2 doesn not belong to an area
where the diffusion should follow directionality
*/
/*
Do not consider pixel2 in the linear equation for pixel
*/
continue;
}
theta2= sparse_diffusion_direction_theta_image_arr[pixel2];
alpha2= sparse_diffusion_direction_theta_alpha_arr[pixel2];
/*
If alpha2== 0, the diffusion direction is unknown
If alpha2==255, the diffusion direction is known
and is equal to sparse_diffusion_direction_theta_image_arr[pixel2]
*/
if ( alpha2 == 0 ) {
/*
Diffusion direction at pixel2 is unknown
*/
pixel2_coeff_value= -1.;
value= pixel2_coeff_value;
if ( value != 0 ) {
if ( !(pixel >= 0 && pixel < nrow) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
if ( !(pixel2 >= 0 && pixel2 < ncol) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
triplet_i[triplet->nnz] = pixel;
triplet_j[triplet->nnz] = pixel2;
triplet_x[triplet->nnz] = value;
triplet->nnz++;
}
}
if ( alpha2 == 255 ) {
/*
Diffusion direction at pixel2 is known
*/
b_value+= theta2;
}
pixel_coeff_value+= 1.;
}
}
value= pixel_coeff_value;
if ( value != 0 ) {
if ( !(pixel >= 0 && pixel < nrow) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
if ( !(pixel >= 0 && pixel < ncol) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
triplet_i[triplet->nnz] = pixel;
triplet_j[triplet->nnz] = pixel;
triplet_x[triplet->nnz] = value;
triplet->nnz++;
}
value= b_value;
if ( value != 0 ) {
((double *)(b->x))[pixel] = value;
}
}
}
if ( !(triplet->nnz <= nzmax) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
for ( k= 0 ; k< triplet->nnz ; k++ ) {
row_ind= triplet_i[k];
col_ind= triplet_j[k];
value= triplet_x[k];
if ( !(row_ind >= 0 && row_ind < nrow) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
if ( !(col_ind >= 0 && col_ind < ncol) ) {
error_handler((char *)"create_dense_diffusion_direction_image");
}
}
// Convert triplet to sparse matrix
A = cholmod_l_triplet_to_sparse(triplet, triplet->nnz, &common);
if (A == nullptr) {
perror("cholmod_l_triplet_to_sparse");
abort();
}
cholmod_l_free_triplet(&triplet, &common);
// Solve
x = SuiteSparseQR<double>(A, b, &common);
// Compute the residual
residual = cholmod_l_copy_dense(b, &common);
cholmod_l_sdmult(A, 0, minusone, one, x, residual, &common);
residual_norm = cholmod_l_norm_dense(residual, 2, &common) ;
std::cout << "|| A x - b ||_2 = " << residual_norm << "\n";
/*
Fill the dense diffusion direction image
*/
for ( i= 0 ; i< height ; i++ ) {
for ( j= 0 ; j< width ; j++ ) {
pixel= i*width+j;
/*
Let's see if pixel belongs to an area
where the diffusion should follow directionality
*/
diffusion_direction_alpha= diffusion_direction_alpha_arr[pixel];
if ( diffusion_direction_alpha == 0 ) {
/*
Pixel does not belongs to an area
where the diffusion should follow directionality
*/
/*
Do nothing
*/
continue;
}
theta= sparse_diffusion_direction_theta_image_arr[pixel];
alpha= sparse_diffusion_direction_theta_alpha_arr[pixel];
/*
If alpha== 0, the diffusion direction is unknown
If alpha==255, the diffusion direction is known
and is equal to sparse_diffusion_direction_theta_image_arr[pixel]
*/
if ( alpha == 0 ) {
/*
Diffusion direction at pixel is unknown
*/
value= ((double *)(x->x))[pixel];
theta= value;
}
if ( alpha == 255 ) {
/*
Diffusion direction at pixel is known
*/
}
/*
Store the diffusion direction in the dense diffusion direction image
*/
dense_diffusion_direction_theta_image_arr[pixel]= theta;
}
}
// Free memory
cholmod_l_free_dense(&residual, &common);
cholmod_l_free_sparse(&A, &common);
cholmod_l_free_dense(&x, &common);
cholmod_l_free_dense(&b, &common);
cholmod_l_finish(&common);
}