Skip to content

Training of a neural network for nonlinear regression prediction with TensorFlow and Keras API.

License

vishalgoyal316/nonlinear_regression_keras

 
 

Repository files navigation

NON-LINEAR REGRESSION WITH KERAS

This repository focuses training of a neural network for regression prediction using "Keras". Please check this medium post for all of the theoretical and practical details! Please contact if you need professional projects are based non-linear regression with the super high accuracy.

Theory

In this study,"the yacht hydrodynamics data set" was used as a case study and it was reached 0.99 R-square value which is awesome!

To implement a neural network for regression, it must to be defined the architecture itself. It is used a simple Multilayer Perceptron (MLP) as shown at the figure below to define the architecture.

And, here is the implementation using Keras:

The approaches and codes that shared in this tutorial can be adopted for any other regression tasks such as "computer hardware", "energy efficiency" and more!

Experimental Results

Here are the results from left to right: plot of training history, plot of actual vs prediction for training set, plot of actual vs prediction for validation set.

Here is the main python notebook that explains all of the stuff step by step!

Citation

If you use this code for your publications, please cite it as:

@ONLINE{hse,
    author = "Ahmet Özlü",
    title  = "Non-linear regression using Keras",
    year   = "2020",
    url    = "https://github.com/ahmetozlu/nonlinear_regression_keras"
}

Author

Ahmet Özlü

License

This system is available under the MIT license. See the LICENSE file for more info.

About

Training of a neural network for nonlinear regression prediction with TensorFlow and Keras API.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%