A fast, adaptive approach to estimating contrast sensitivity function parameters.
This implmentation is based on:
Lesmes, L. A., Lu, Z. L., Baek, J., & Albright, T. D. (2010). Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method. Journal of vision, 10(3), 17-17.
Special thanks to Dr. Tianshi Lu at Wichita State University for providing a Matlab implemenation of the fundamental algorithm and Dr. Rui Ni at Wichita State University for the motivation.
$ pip3 install -e .
Requires:
numpy
qtpy
- Qt bindings (via
PySide2
,PyQt5
,PySide
, orPyQt
)
Optional (for simulation visuals):
matplotlib
Run:
$ python -m QuickCSF.app
A settings dialog will appear; session ID and viewing distance are required. Arguments can also be specified on the command line. Use the --help
flag to see all options:
$ python -m QuickCSF.app --help
Run:
$ python -m QuickCSF.simulate
A settings dialog will appear; the number of trials is required. Arguments can also be specified on the command line. use the --help
flag to see all options:
$ python -m QuickCSF.simulate --help