Skip to content

wangyuchenphy/HaUnet_paper

 
 

Repository files navigation

HaUNet: Hard attention enhanced U-Net

Quick start

install requirements

pip install -r requirements.txt

generate simulated images

generate images of 3 phases: rock salt, O1, and O3

> python simulate_defect.py

generate 3 phases and dislocation

> python simulate_defect_edge_dislocation.py

Training

> python train.py -h
usage: train.py [-h] [--epochs E] [--batch-size B] [--learning-rate LR]
                [--load LOAD] [--scale SCALE] [--validation VAL] [--amp]

Train the HaUNet on images and target masks

optional arguments:
  -h, --help            show this help message and exit
  --epochs E, -e E      Number of epochs
  --batch-size B, -b B  Batch size
  --learning-rate LR, -l LR
                        Learning rate
  --load LOAD, -f LOAD  Load model from a .pth file
  --scale SCALE, -s SCALE
                        Downscaling factor of the images
  --validation VAL, -v VAL
                        Percent of the data that is used as validation (0-100)
  --amp                 Use mixed precision

By default, the scale is 0.5, so if you wish to obtain better results (but use more memory), set it to 1.

Prediction

c is the classes of prediction
Set to 3 or 4

python predict.py -m 'path_to_pretrained_model' -s 1 -c 3  

Pretrained model

pretrained models are available for the phase segmentaion.

prediction example

The '0069 crop' folder

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%