Skip to content

wangyuchenphy/PyTorch-book

 
 

Repository files navigation

这是书籍《深度学习框架PyTorch:入门与实战》的对应代码,但是也可以作为一个独立的PyTorch入门指南和教程。

内容

该书(教程/仓库)的内容如图所示: 思维导图

可以看出本教程可以分为两部分:

基础部分(前五章)讲解PyTorch内容,这部份介绍了PyTorch中主要的的模块,和深度学习中常用的一些工具。对于这部分内容,这里利用Jupyter Notebook作为教学工具,读者可以结合notebook修改运行,反复实验。

  • 第二章介绍如何安装PyTorch和配置学习环境。同时提供了一个快速入门教程,基于官方的教程简化并更新内容,读者可以花费大约1到2小时的时间快速完成入门任务,而后根据需求再选择深入阅读后续相关章节的内容。
  • 第三章介绍了PyTorch中多维数组Tensor和动态图autograd/Variable的使用,并配以例子,让读者分别使用Tensor和autograd实现线性回归,比较二者的不同点。除了介绍这二者的基础使用之外,本章还对Tensor的底层设计,以及autograd的计算图原理进行比较深入分析,希望能使得读者能对这些底层知识有更全面的掌握。
  • 第四章介绍了PyTorch中神经网络模块nn的基础用法,同时讲解了神经网络中“层”,“损失函数”,“优化器”等,最后带领读者用不到50行的代码搭建出曾夺得ImageNet冠军的ResNet。
  • 第五章介绍了PyTorch中数据加载,GPU加速,持久化和可视化等相关工具。

实战部分(第六到十章)利用PyTorch实现了几个酷炫有趣的应用,对于这部分的内容,本仓库给出完整的实现代码,并提供预训练好的模型作为demo,供读者测试。

  • 第六章是承上启下的一章,这一章的目标不是教会读者新函数,新知识,而是结合Kaggle中一个经典的比赛,实现一个深度学习中比较简单的图像二分类问题。在实现过程中,带领读者复习前五章的知识,并提出代码规范以合理的组织程序,代码,使得程序更加可读,可维护。第六章还介绍了在PyTorch中如何进行debug。
  • 第七章为读者讲解了当前最火爆的生成对抗网络(GAN),带领读者从头实现一个动漫头像生成器,能够利用GAN生成风格多变的动漫头像。
  • 第八章为读者讲解了风格迁移的相关知识,并带领读者实现风格迁移网络,将自己的照片变成高大上的名画。
  • 第九章为读者讲解了一些自然语言处理的基础知识,并讲解了CharRNN的原理。而后利用收集了几万首唐诗,训练出了一个可以自动写诗歌的小程序。这个小程序可以控制生成诗歌的格式意境,还能生成藏头诗
  • 第十章为读者介绍了图像描述任务,并以最新的AI Challenger比赛的数据为例,带领读者实现了一个可以进行简单图像描述的的小程序。

Notebook中的文字描述内容属于本书的初稿,有描述不通顺,错别字之处还请谅解。本打算删除notebook中描述的内容,只留下代码,但为了方便读者阅读学习,最终还是决定留下。 我会抽空根据书中内容逐字校对这部分内容,但并不对此并不提供具体时间点。

是否需要买书

不是必要的,这个仓库包含书中50%以上的文字内容,90%以上的代码,尤其是前几章入门内容,几乎是完全保留了书中的讲解内容。读者即使不买书也能正常使用本教程。

但纸质书有如下优势

  • 更流畅的体验: 书中的文字,描述,内容经过多人反复校对审查所得,所以描述更自然,错误更少,排版更美观。这个仓库中的Jupyter Notebook中的内容属于本书的初稿,因此有不少描述不通顺,错别字,错误之处。
  • 更好的排版:Jupyter Notebook虽然支持markdown,但是排版比较别扭,而书中的排版有严格的规范。
  • 更完整的内容,更丰富的插图,更详细代码说明:尤其是实战部分,有对于代码设计的说明,原理的讲解,模型的介绍,结合书中内容会更好的理解代码。
  • 有纸质书在手,可以快速翻阅查找。

如果你觉得纸质书的优势吸引你,不妨小破费一笔,支持一下作者这大半年来的工作。同时为了尽可能的方便读者,笔者还专门开通腾讯云的服务,用以保存教程中用到的部分模型,预处理的数据和部分大文件。

代码说明

  • 教程代码同时在Python2和Python3下测试通过
  • 实战部分代码还同时在GPU和CPU环境下测试通过
  • 所有的代码都是基于最新版的PyTorch 0.2.0,本人承诺会至少维护代码更新兼容到PyTorch 0.4

如果有任何不当,或者有待改进的地方,欢迎读者开issue讨论,或者提交pull request。

环境配置

  1. 安装PyTorch,请从官网选择指定的版本安装即可,一键安装(即使你使用anaconda,也建议使用pip)。更多的安装方式请参阅书中说明。

  2. 克隆仓库

    git clone https://github.com/chenyuntc/PyTorch-book.git
  3. 安装第三方依赖包

    cd pytorch-book && pip install -r requirements.txt

Visdom打不开及其解决方案

教程中用到了Visdom作为可视化工具,但是最近发现visdom 不能用了,打开之后网页一片空白,经过抓包分析发现是两个js文件被防火墙给阻挡了:

  • https://cdn.rawgit.com/plotly/plotly.js/master/dist/plotly.min.js
  • https://cdn.rawgit.com/STRML/react-grid-layout/0.14.0/dist/react-grid-layout.min.js

这里本人提供一个比较简单的解决方法:

  • Step 1: 找到系统使用visdom的index.html文件,

    locate visdom/static/index.html

    输出 系统中visdom 的html文件:

    /usr/local/lib/python2.7/dist-packages/visdom/static/index.html
    /usr/local/lib/python3.5/dist-packages/visdom/static/index.html
  • Step 2:下载本人修改过后的文件,替换step1 找到的index.html, 可能需要root权限。

这时候再刷新浏览器,就能发现visdom正常显示了。

还有其它的解决方法,包括:

  • 下载这两个文件到本地,然后修改index.html中都应js文件的路径
  • 使用代理,但是把某些域名加入白名单
  • ....

Happy Coding!

About

PyTorch教程

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 94.2%
  • Python 5.8%