Skip to content

weijianzhg/PolarFact.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PolarFact

Build Status

A Julia package for the matrix polar decomposition.

Install

To install the release version, type

julia> Pkg.add("PolarFact")

Overview

Every m-by-n matrix A has a polar decomposition A=UH, where the m-by-n matrix U has orthonormal columns if m>n or orthonormal rows if m<n and the n-by-n matrix H is Hermitian positive semidefinite. For a square matrix A, H is unique. If in addition, A is nonsingular, then H is positive definite and U is unique.

The polar decomposition is closely related to the singular value decomposition (SVD). In particular, if A = P*S*Q' is a singular value decomposition of A, then U = P*Q' and H = Q*S*Q' are the corresponding polar factors. The orthonormal polar factor U is the nearest orthonormal matrix to A in the Frobenius norm [1, Sec. 8.1].

[1] Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, USA, 2008.

This package provides the following algorithms for computing matrix polar decomposition:

  • (Scaled) Newton's method

    Reference: [2] Nicholas J. Higham, Computing the Polar Decomposition ---with Applications, SIAM J. Sci. Statist. Comput. Vol. 7, Num 4 (1986) pp. 1160-1174.

  • the Newton Schulz method

    This method can only apply to matrix A such that norm(A) < sqrt(3).

    Reference: [3] Günther Schulz, Iterative Berechnung der reziproken Matrix, Z. Angew. Math. Mech.,13:57-59, (1933) pp. 114, 181.

  • a hybrid Newton method

    Start with (scaled) Newton's method and switch to Newton-Schulz method when convergence is guaranteed.

    Reference: [4] Nicholas J. Higham and Robert S. Schreiber, Fast Polar Decomposition of an arbitrary matrix, SIAM, J. Sci. Statist. Comput. Vol. 11, No. 4 (1990) pp. 648-655

  • Halley's method

    Reference: [5] Y. Nakatsukasa, Z. Bai and F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, SIAM, J. Mat. Anal. Vol. 31, Num 5 (2010) pp. 2700-2720.

  • the QR-based Dynamically weighted Halley (QDWH) method [5]

  • the SVD method

Comments on Usage

The scaled Newton iteration is a well known and effective method for computing the polar decomposition. It converges quadratically and is backward stable under the assumption that the matrix inverses are computed in a mixed backward forward stable way [6]. The QDWH is a cubic-rate convergent method. It is backward stable under the assumption that column pivoting and either row pivoting or row sorting are used in the QR factorization [6]. Without scaling, both type of methods can be slow when the matrix is ill-conditioned.

On many modern computers, matrix multiplication can be performed very efficiently. The Newton Schulz method requires two matrix multiplication while the (scaled) Newton method requires one matrix inversion. Thus the hybrid Newton is more efficient if matrix multiplication is 2 times faster than the matrix inversion [4].

Comparing to the SVD approach, the iterative algorithms are much more efficient when the matrix is nearly unitary (as in applications, for example, where a time-dependent matrix drifts from orthogonality due to rounding errors or other errors).

[6] Yuji Nakatsukasa and Nicholas J. Higham, Backward stability of iterations for computing the polar decomposition, SIAM, J. Matrix Anal. Appl. Vol. 33, No. 2, pp. 460-479.

Interface

The package provides a high-level function polarfact:

	polarfact(A; alg, maxiter, tol, verbose)

The meaning of the arguments:

  • A : the input matrix of type Matrix{T}, where T could be Float16, Float32, Float64, BigFloat.

  • alg: a symbol that indicates the factorization algorithm (default = :newton).

    This argument accepts the following values:

    • :newton: scaled Newton's method
    • :qdwh: the QR-based Dynamically weighted Halley (QDWH) method
    • :halley: Halley's method
    • :schulz: the Newton Schulz method
    • :hybrid: a hybrid Newton method
    • :svd: the SVD method
  • maxiter: maximum number of iterations (default = 100).

  • tol : tolerance (default = cbrt(eps(T))).

  • verbose : whether to show procedural information (default = false), where Iter is the number of iterations, Rel. err. is equal to norm(preU - U, Inf) / norm(preU, Inf) and Obj. is equal to norm(I - U'*U, Inf).

Note: maxiter, tol and verbose are not used for the SVD method.

The output has type PolarFact.Result, which is defined as

	immutable Result{T}
		U::Matrix{T}               # unitary factor
		H::Matrix{T}               # Hermitian positive semidefinite factor
		niters::Union(Int, Nothing)      # number of iterations or Nothing
		converged::Union(Bool, Nothing)  # whether the algorithm converges or Nothing
	end

Note: niters and converged are of type Nothing for the SVD method.

Examples

julia> using PolarFact

julia> A = rand(6,6);

julia> r = polarfact(A);

julia> r.U
6x6 Array{Float64,2}:
  0.78067    -0.0694445   0.470076    -0.292781   -0.0423338   0.277934 
 -0.0984991   0.200495   -0.350106    -0.167351    0.394071    0.802638 
  0.235931    0.376468    0.00966701   0.0259734   0.78062    -0.438716 
  0.38059    -0.347928   -0.256805     0.79899     0.105905    0.136195 
  0.21592     0.816347   -0.136636     0.261595   -0.445576    0.0362852
 -0.365675    0.160542    0.756137     0.422827    0.154252    0.257271 

julia> r.niters
6

julia> using MatrixDepot  # a test matrix collection

julia> A = matrixdepot("randsvd", 20, 10^15);  # test a very ill conditioned random matrix 

julia> r = polarfact(A, alg = :newton, verbose = true);
Iter.    Rel. err.        Obj.         
    1     1.548278e+07     4.804543e+14
    2     9.999002e-01     5.902800e+06
    3     9.925194e-01     7.247316e+02
    4     9.317962e-01     9.261149e+00
    5     7.226745e-01     3.409441e-01
    6     1.392861e-01     2.550612e-03
    7     1.272341e-03     2.760504e-07
    8     1.378506e-07     1.062337e-14

julia> r = polarfact(A, alg = :qdwh, verbose = true);
Iter.    Rel. err.        Obj.         
    1     1.018823e+00     2.294023e+00
    2     9.492166e-01     2.113416e+00
    3     6.766440e-01     7.363896e-01
    4     1.337401e-01     8.038009e-04
    5     1.208881e-04     4.126278e-13
    6     6.184049e-14     2.242130e-15

julia> r = polarfact(A, alg = :halley);

julia> r.niters
34

julia> A = matrixdepot("hadamard", Float32, 8) # test Float32 Hadamard matrix
8x8 Array{Float32,2}:
 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0
 1.0  -1.0   1.0  -1.0   1.0  -1.0   1.0  -1.0
 1.0   1.0  -1.0  -1.0   1.0   1.0  -1.0  -1.0
 1.0  -1.0  -1.0   1.0   1.0  -1.0  -1.0   1.0
 1.0   1.0   1.0   1.0  -1.0  -1.0  -1.0  -1.0
 1.0  -1.0   1.0  -1.0  -1.0   1.0  -1.0   1.0
 1.0   1.0  -1.0  -1.0  -1.0  -1.0   1.0   1.0
 1.0  -1.0  -1.0   1.0  -1.0   1.0   1.0  -1.0

julia> r = polarfact(A)
Result{Float32}(8x8 Array{Float32,2}:
 0.353553   0.353553   0.353553   0.353553     0.353553   0.353553   0.353553
 0.353553  -0.353553   0.353553  -0.353553     -0.353553   0.353553  -0.353553
 0.353553   0.353553  -0.353553  -0.353553      0.353553  -0.353553  -0.353553
 0.353553  -0.353553  -0.353553   0.353553     -0.353553  -0.353553   0.353553
 0.353553   0.353553   0.353553   0.353553     -0.353553  -0.353553  -0.353553
 0.353553  -0.353553   0.353553  -0.353553     0.353553  -0.353553   0.353553
 0.353553   0.353553  -0.353553  -0.353553     -0.353553   0.353553   0.353553
 0.353553  -0.353553  -0.353553   0.353553      0.353553   0.353553  -0.353553,8x8 Array{Float32,2}:
  2.82843     -1.49012e-8  -5.96046e-8    -1.49012e-8  -1.19209e-7  -1.49012e-8
 -1.49012e-8   2.82843      5.96046e-8      5.96046e-8  -4.47035e-8  -7.45058e-8
 -5.96046e-8   5.96046e-8   2.82843         0.0          8.9407e-8   -8.9407e-8 
 -7.45058e-8   1.49012e-8   2.98023e-8      1.3411e-7    1.3411e-7    1.49012e-7
 -2.98023e-8   4.47035e-8   0.0             1.49012e-8   2.98023e-8  -7.45058e-8
 -1.49012e-8   5.96046e-8   0.0            2.82843      1.63913e-7   7.45058e-8
 -1.19209e-7  -4.47035e-8   8.9407e-8       1.63913e-7   2.82843      7.45058e-8
 -1.49012e-8  -7.45058e-8  -8.9407e-8       7.45058e-8   7.45058e-8   2.82843   ,2,true)

Acknowledgements

The design of the package is inspired by NMF.jl.

About

A Julia package for the matrix polar decomposition

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages