generated from xinntao/ProjectTemplate-Python
-
Notifications
You must be signed in to change notification settings - Fork 150
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* AddHyperIQA (#2) * add assessment method: hyperiqa * add assessment method: hyperiqa * add assessment method: hyperiqa * add assessment method: hyperiqa * add assessment method: hyperiqa * delete initialization code * Headpose—hopenet (#3) * fix a bug: bgr->rgb * add headpose method: hopenet * add headpose method: hopenet * eliminate conflict of hyperiqa * add function: scandir * add function: scandir * add matting: modnet (#4) * add pad blur * fix bug in face restoration helper * add face parsing bisenet * fix bug * update download link for models * version v0.2.0.0 Co-authored-by: Liangbin <[email protected]>
- Loading branch information
1 parent
4c63b59
commit be75b9c
Showing
22 changed files
with
1,700 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
0.1.3.1 | ||
0.2.0.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
import torch | ||
|
||
from facexlib.utils import load_file_from_url | ||
from .hyperiqa_net import HyperIQA | ||
|
||
|
||
def init_assessment_model(model_name, half=False, device='cuda'): | ||
if model_name == 'hypernet': | ||
model = HyperIQA(16, 112, 224, 112, 56, 28, 14, 7) | ||
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/assessment_hyperIQA.pth' | ||
else: | ||
raise NotImplementedError(f'{model_name} is not implemented.') | ||
|
||
# load the pre-trained hypernet model | ||
hypernet_model_path = load_file_from_url(url=model_url, model_dir='facexlib/weights', progress=True, file_name=None) | ||
model.hypernet.load_state_dict((torch.load(hypernet_model_path, map_location=lambda storage, loc: storage))) | ||
model = model.eval() | ||
model = model.to(device) | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
import torch as torch | ||
import torch.nn as nn | ||
from torch.nn import functional as F | ||
|
||
|
||
class HyperIQA(nn.Module): | ||
""" | ||
Combine the hypernet and target network within a network. | ||
""" | ||
|
||
def __init__(self, *args): | ||
super(HyperIQA, self).__init__() | ||
self.hypernet = HyperNet(*args) | ||
|
||
def forward(self, img): | ||
net_params = self.hypernet(img) | ||
# build the target network | ||
target_net = TargetNet(net_params) | ||
for param in target_net.parameters(): | ||
param.requires_grad = False | ||
# predict the face quality | ||
pred = target_net(net_params['target_in_vec']) | ||
return pred | ||
|
||
|
||
class HyperNet(nn.Module): | ||
""" | ||
Hyper network for learning perceptual rules. | ||
Args: | ||
lda_out_channels: local distortion aware module output size. | ||
hyper_in_channels: input feature channels for hyper network. | ||
target_in_size: input vector size for target network. | ||
target_fc(i)_size: fully connection layer size of target network. | ||
feature_size: input feature map width/height for hyper network. | ||
Note: | ||
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'. # noqa E501 | ||
""" | ||
|
||
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, | ||
target_fc3_size, target_fc4_size, feature_size): | ||
super(HyperNet, self).__init__() | ||
|
||
self.hyperInChn = hyper_in_channels | ||
self.target_in_size = target_in_size | ||
self.f1 = target_fc1_size | ||
self.f2 = target_fc2_size | ||
self.f3 = target_fc3_size | ||
self.f4 = target_fc4_size | ||
self.feature_size = feature_size | ||
|
||
self.res = resnet50_backbone(lda_out_channels, target_in_size) | ||
|
||
self.pool = nn.AdaptiveAvgPool2d((1, 1)) | ||
|
||
# Conv layers for resnet output features | ||
self.conv1 = nn.Sequential( | ||
nn.Conv2d(2048, 1024, 1, padding=(0, 0)), nn.ReLU(inplace=True), nn.Conv2d(1024, 512, 1, padding=(0, 0)), | ||
nn.ReLU(inplace=True), nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)), nn.ReLU(inplace=True)) | ||
|
||
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases | ||
self.fc1w_conv = nn.Conv2d( | ||
self.hyperInChn, int(self.target_in_size * self.f1 / feature_size**2), 3, padding=(1, 1)) | ||
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1) | ||
|
||
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size**2), 3, padding=(1, 1)) | ||
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2) | ||
|
||
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size**2), 3, padding=(1, 1)) | ||
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3) | ||
|
||
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size**2), 3, padding=(1, 1)) | ||
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4) | ||
|
||
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4) | ||
self.fc5b_fc = nn.Linear(self.hyperInChn, 1) | ||
|
||
def forward(self, img): | ||
feature_size = self.feature_size | ||
|
||
res_out = self.res(img) | ||
|
||
# input vector for target net | ||
target_in_vec = res_out['target_in_vec'].view(-1, self.target_in_size, 1, 1) | ||
|
||
# input features for hyper net | ||
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).view(-1, self.hyperInChn, feature_size, feature_size) | ||
|
||
# generating target net weights & biases | ||
target_fc1w = self.fc1w_conv(hyper_in_feat).view(-1, self.f1, self.target_in_size, 1, 1) | ||
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f1) | ||
|
||
target_fc2w = self.fc2w_conv(hyper_in_feat).view(-1, self.f2, self.f1, 1, 1) | ||
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f2) | ||
|
||
target_fc3w = self.fc3w_conv(hyper_in_feat).view(-1, self.f3, self.f2, 1, 1) | ||
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f3) | ||
|
||
target_fc4w = self.fc4w_conv(hyper_in_feat).view(-1, self.f4, self.f3, 1, 1) | ||
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f4) | ||
|
||
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).view(-1, 1, self.f4, 1, 1) | ||
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, 1) | ||
|
||
out = {} | ||
out['target_in_vec'] = target_in_vec | ||
out['target_fc1w'] = target_fc1w | ||
out['target_fc1b'] = target_fc1b | ||
out['target_fc2w'] = target_fc2w | ||
out['target_fc2b'] = target_fc2b | ||
out['target_fc3w'] = target_fc3w | ||
out['target_fc3b'] = target_fc3b | ||
out['target_fc4w'] = target_fc4w | ||
out['target_fc4b'] = target_fc4b | ||
out['target_fc5w'] = target_fc5w | ||
out['target_fc5b'] = target_fc5b | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(planes * 4) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNetBackbone(nn.Module): | ||
|
||
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000): | ||
super(ResNetBackbone, self).__init__() | ||
self.inplanes = 64 | ||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | ||
self.bn1 = nn.BatchNorm2d(64) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1 = self._make_layer(block, 64, layers[0]) | ||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | ||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | ||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | ||
|
||
# local distortion aware module | ||
self.lda1_pool = nn.Sequential( | ||
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.AvgPool2d(7, stride=7), | ||
) | ||
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels) | ||
|
||
self.lda2_pool = nn.Sequential( | ||
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.AvgPool2d(7, stride=7), | ||
) | ||
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels) | ||
|
||
self.lda3_pool = nn.Sequential( | ||
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.AvgPool2d(7, stride=7), | ||
) | ||
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels) | ||
|
||
self.lda4_pool = nn.AvgPool2d(7, stride=7) | ||
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3) | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1): | ||
downsample = None | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(planes * block.expansion), | ||
) | ||
|
||
layers = [] | ||
layers.append(block(self.inplanes, planes, stride, downsample)) | ||
self.inplanes = planes * block.expansion | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
x = self.layer1(x) | ||
|
||
# the same effect as lda operation in the paper, but save much more memory | ||
lda_1 = self.lda1_fc(self.lda1_pool(x).view(x.size(0), -1)) | ||
x = self.layer2(x) | ||
lda_2 = self.lda2_fc(self.lda2_pool(x).view(x.size(0), -1)) | ||
x = self.layer3(x) | ||
lda_3 = self.lda3_fc(self.lda3_pool(x).view(x.size(0), -1)) | ||
x = self.layer4(x) | ||
lda_4 = self.lda4_fc(self.lda4_pool(x).view(x.size(0), -1)) | ||
|
||
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1) | ||
|
||
out = {} | ||
out['hyper_in_feat'] = x | ||
out['target_in_vec'] = vec | ||
|
||
return out | ||
|
||
|
||
def resnet50_backbone(lda_out_channels, in_chn, **kwargs): | ||
"""Constructs a ResNet-50 model_hyper.""" | ||
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs) | ||
return model | ||
|
||
|
||
class TargetNet(nn.Module): | ||
""" | ||
Target network for quality prediction. | ||
""" | ||
|
||
def __init__(self, paras): | ||
super(TargetNet, self).__init__() | ||
self.l1 = nn.Sequential( | ||
TargetFC(paras['target_fc1w'], paras['target_fc1b']), | ||
nn.Sigmoid(), | ||
) | ||
self.l2 = nn.Sequential( | ||
TargetFC(paras['target_fc2w'], paras['target_fc2b']), | ||
nn.Sigmoid(), | ||
) | ||
|
||
self.l3 = nn.Sequential( | ||
TargetFC(paras['target_fc3w'], paras['target_fc3b']), | ||
nn.Sigmoid(), | ||
) | ||
|
||
self.l4 = nn.Sequential( | ||
TargetFC(paras['target_fc4w'], paras['target_fc4b']), | ||
nn.Sigmoid(), | ||
TargetFC(paras['target_fc5w'], paras['target_fc5b']), | ||
) | ||
|
||
def forward(self, x): | ||
q = self.l1(x) | ||
# q = F.dropout(q) | ||
q = self.l2(q) | ||
q = self.l3(q) | ||
q = self.l4(q).squeeze() | ||
return q | ||
|
||
|
||
class TargetFC(nn.Module): | ||
""" | ||
Fully connection operations for target net | ||
Note: | ||
Weights & biases are different for different images in a batch, | ||
thus here we use group convolution for calculating images in a batch with individual weights & biases. | ||
""" | ||
|
||
def __init__(self, weight, bias): | ||
super(TargetFC, self).__init__() | ||
self.weight = weight | ||
self.bias = bias | ||
|
||
def forward(self, input_): | ||
|
||
input_re = input_.view(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3]) | ||
weight_re = self.weight.view(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], | ||
self.weight.shape[3], self.weight.shape[4]) | ||
bias_re = self.bias.view(self.bias.shape[0] * self.bias.shape[1]) | ||
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0]) | ||
|
||
return out.view(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
import torch | ||
|
||
from facexlib.utils import load_file_from_url | ||
from .hopenet_arch import HopeNet | ||
|
||
|
||
def init_headpose_model(model_name, half=False, device='cuda'): | ||
if model_name == 'hopenet': | ||
model = HopeNet('resnet', [3, 4, 6, 3], 66) | ||
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/headpose_hopenet.pth' | ||
else: | ||
raise NotImplementedError(f'{model_name} is not implemented.') | ||
|
||
model_path = load_file_from_url(url=model_url, model_dir='facexlib/weights', progress=True, file_name=None) | ||
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)['params'] | ||
model.load_state_dict(load_net, strict=True) | ||
model.eval() | ||
model = model.to(device) | ||
return model |
Oops, something went wrong.