Building simplification is conducted in this work using a fully conv layers with down-conv and up-conv. The original work was provided by a master thesis, which use the car trajectories to reconstruct the road networks.
Buildings shown at original scale 1:15,000, from top to bottom: Test 1 and Test 2; from left to right: input image, target image, U-net prediction, Residual U-net prediction and GAN prediction.
Please cite this paper in your publications if it helps your research:
@article{feng2019learning,
title={Learning cartographic building generalization with deep convolutional neural networks},
author={Feng, Yu and Thiemann, Frank and Sester, Monika},
journal={ISPRS International Journal of Geo-Information},
volume={8},
number={6},
pages={258},
year={2019},
publisher={Multidisciplinary Digital Publishing Institute}
}
{
"id": "/yourname-1gpu",
"backoffFactor": 1.15,
"backoffSeconds": 1,
"cmd": "",
"container": {
"type": "MESOS",
"volumes": [],
"docker": {
"image": "tensorflow/tensorflow:1.5.0-gpu-py3",
"forcePullImage": false,
"parameters": []
}
},
"cpus": 1,
"disk": 0,
"instances": 0,
"maxLaunchDelaySeconds": 3600,
"mem": 10000,
"gpus": 1,
"networks": [
{
"mode": "host"
}
],
"portDefinitions": [],
"requirePorts": false,
"upgradeStrategy": {
"maximumOverCapacity": 1,
"minimumHealthCapacity": 1
},
"killSelection": "YOUNGEST_FIRST",
"unreachableStrategy": {
"inactiveAfterSeconds": 0,
"expungeAfterSeconds": 0
},
"healthChecks": [],
"fetch": [],
"constraints": []
}
-
Install Docker (https://www.docker.com/get-docker ) under Windows.
-
Dowload a docker image and start an instance according to this image (z.B. tensorflow/tensorflow:1.5.0-gpu ).
- First time run it
docker pull tensorflow/tensorflow:1.5.0-gpu // Download a docker image from dockerhub
docker run tensorflow/tensorflow:1.5.0-gpu // Run this docker iamge
docker ps // See your current working instance name
winpty docker exec -it yourDockerInstanceName bash // Run bash on this instance
- Latter run it (After you restart your PC)
docker ps -a // See your already shut down working instance name
docker start yourDockerInstanceName // Start your instance of the downloaded image
winpty docker exec -it yourDockerInstanceName bash // Run bash on this instance
- Install dcos tool at this local docker instance with the following code (Latter do not need to install it again)
[ -d /usr/local/bin ] || mkdir -p /usr/local/bin &&
curl https://downloads.dcos.io/binaries/cli/linux/x86-64/dcos-1.10/dcos -o dcos &&
mv dcos /usr/local/bin &&
chmod +x /usr/local/bin/dcos &&
dcos cluster setup http://130.75.51.24 &&
dcos
- Open the GPU instance at DCOS
dcos task exec -it myname-2gpu bash
Install the dependcies and set up connecting folder
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/nvidia/lib64 &&
export PATH=$PATH:/usr/local/nvidia/bin:/usr/local/sbin:/usr/sbin:/sbin &&
apt-get update &&
apt-get install cifs-utils -y &&
apt-get install git -y &&
apt-get install python3-pip -y &&
pip3 install keras &&
apt-get install python3-tk -y &&
apt-get install python3-skimage -y &&
apt install gdal-bin python-gdal python3-gdal -y &&
git clone https://www.github.com/keras-team/keras-contrib.git &&
cd keras-contrib &&
python3 setup.py install &&
cd ../ &&
mkdir tmp &&
mount -t cifs -o user=,password= //130.75.51.38/tmp/yu tmp &&
cd tmp
git clone https://www.github.com/keras-team/keras-contrib.git
cd keras-contrib
python setup.py install
Run a python script and delete the DCOS instance after it finished (Optional)
python3 simply.py
curl -X DELETE http://130.75.51.24/marathon/v2/apps/yourinstancename
git add -A && git commit -m "Your Message"