Skip to content

Learning Cartographic Building Generalization with Deep Convolutional Neural Networks

License

Notifications You must be signed in to change notification settings

yuzzfeng/MapGen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Cartographic Building Generalization with Deep Convolutional Neural Networks

Introduction

Building simplification is conducted in this work using a fully conv layers with down-conv and up-conv. The original work was provided by a master thesis, which use the car trajectories to reconstruct the road networks.

Comparison

Buildings shown at original scale 1:15,000, from top to bottom: Test 1 and Test 2; from left to right: input image, target image, U-net prediction, Residual U-net prediction and GAN prediction.


Citation:

Please cite this paper in your publications if it helps your research:

@article{feng2019learning,
  title={Learning cartographic building generalization with deep convolutional neural networks},
  author={Feng, Yu and Thiemann, Frank and Sester, Monika},
  journal={ISPRS International Journal of Geo-Information},
  volume={8},
  number={6},
  pages={258},
  year={2019},
  publisher={Multidisciplinary Digital Publishing Institute}
}

Setting for DCOS

{
  "id": "/yourname-1gpu",
  "backoffFactor": 1.15,
  "backoffSeconds": 1,
  "cmd": "",
  "container": {
    "type": "MESOS",
    "volumes": [],
    "docker": {
      "image": "tensorflow/tensorflow:1.5.0-gpu-py3",
      "forcePullImage": false,
      "parameters": []
    }
  },
  "cpus": 1,
  "disk": 0,
  "instances": 0,
  "maxLaunchDelaySeconds": 3600,
  "mem": 10000,
  "gpus": 1,
  "networks": [
    {
      "mode": "host"
    }
  ],
  "portDefinitions": [],
  "requirePorts": false,
  "upgradeStrategy": {
    "maximumOverCapacity": 1,
    "minimumHealthCapacity": 1
  },
  "killSelection": "YOUNGEST_FIRST",
  "unreachableStrategy": {
    "inactiveAfterSeconds": 0,
    "expungeAfterSeconds": 0
  },
  "healthChecks": [],
  "fetch": [],
  "constraints": []
}

Connect to DCOS instance via Windows

  1. Install Docker (https://www.docker.com/get-docker ) under Windows.

  2. Dowload a docker image and start an instance according to this image (z.B. tensorflow/tensorflow:1.5.0-gpu ).

  • First time run it
docker pull tensorflow/tensorflow:1.5.0-gpu                   // Download a docker image from dockerhub
docker run tensorflow/tensorflow:1.5.0-gpu                    // Run this docker iamge
docker ps                                                     // See your current working instance name
winpty docker exec -it yourDockerInstanceName bash            // Run bash on this instance
  • Latter run it (After you restart your PC)
docker ps  -a                                                 // See your already shut down working instance name
docker start yourDockerInstanceName                           // Start your instance of the downloaded image
winpty docker exec -it yourDockerInstanceName bash            // Run  bash on this instance
  1. Install dcos tool at this local docker instance with the following code (Latter do not need to install it again)
[ -d /usr/local/bin ] || mkdir -p /usr/local/bin && 
curl https://downloads.dcos.io/binaries/cli/linux/x86-64/dcos-1.10/dcos -o dcos && 
mv dcos /usr/local/bin && 
chmod +x /usr/local/bin/dcos && 
dcos cluster setup http://130.75.51.24 && 
dcos
  1. Open the GPU instance at DCOS
dcos task exec -it myname-2gpu bash

Dependencies and Settings

Install the dependcies and set up connecting folder

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/nvidia/lib64 &&
export PATH=$PATH:/usr/local/nvidia/bin:/usr/local/sbin:/usr/sbin:/sbin &&
apt-get update &&
apt-get install cifs-utils -y &&
apt-get install git -y &&
apt-get install python3-pip -y &&
pip3 install keras &&
apt-get install python3-tk -y &&
apt-get install python3-skimage -y &&
apt install gdal-bin python-gdal python3-gdal -y &&
git clone https://www.github.com/keras-team/keras-contrib.git &&
cd keras-contrib &&
python3 setup.py install &&
cd ../ &&
mkdir tmp &&
mount -t cifs -o user=,password= //130.75.51.38/tmp/yu tmp &&
cd tmp 

git clone https://www.github.com/keras-team/keras-contrib.git
cd keras-contrib
python setup.py install

Run a python script and delete the DCOS instance after it finished (Optional)

python3 simply.py
curl -X DELETE http://130.75.51.24/marathon/v2/apps/yourinstancename

Git Commands

git add -A && git commit -m "Your Message"

About

Learning Cartographic Building Generalization with Deep Convolutional Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published