Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix broken links #3291

Merged
merged 9 commits into from
Jan 17, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/book/getting-started/core-concepts.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ description: Discovering the core concepts behind ZenML.

**ZenML** is an extensible, open-source MLOps framework for creating portable, production-ready **MLOps pipelines**. It's built for data scientists, ML Engineers, and MLOps Developers to collaborate as they develop to production. In order to achieve this goal, ZenML introduces various concepts for different aspects of an ML workflow and we can categorize these concepts under three different threads:

<table data-view="cards"><thead><tr><th></th><th></th><th data-hidden></th><th data-hidden data-card-target data-type="content-ref"></th></tr></thead><tbody><tr><td><mark style="color:purple;"><strong>1. Development</strong></mark></td><td>As a developer, how do I design my machine learning workflows?</td><td></td><td><a href="core-concepts.md#1-development">#1-development</a></td></tr><tr><td><mark style="color:purple;"><strong>2. Execution</strong></mark></td><td>While executing, how do my workflows utilize the large landscape of MLOps tooling/infrastructure?</td><td></td><td><a href="core-concepts.md#2-execution">#2-execution</a></td></tr><tr><td><mark style="color:purple;"><strong>3. Management</strong></mark></td><td>How do I establish and maintain a production-grade and efficient solution?</td><td></td><td><a href="core-concepts.md#3-management">#3-management</a></td></tr></tbody></table>
<table data-view="cards"><thead><tr><th></th><th></th><th data-hidden></th><th data-hidden data-card-target data-type="content-ref"></th></tr></thead><tbody><tr><td><mark style="color:purple;"><strong>1. Development</strong></mark></td><td>As a developer, how do I design my machine learning workflows?</td><td></td><td><a href="core-concepts.md#1-development">1. Development</a></td></tr><tr><td><mark style="color:purple;"><strong>2. Execution</strong></mark></td><td>While executing, how do my workflows utilize the large landscape of MLOps tooling/infrastructure?</td><td></td><td><a href="core-concepts.md#2-execution">2. Execution</a></td></tr><tr><td><mark style="color:purple;"><strong>3. Management</strong></mark></td><td>How do I establish and maintain a production-grade and efficient solution?</td><td></td><td><a href="core-concepts.md#3-management">3. Management</a></td></tr></tbody></table>

## 1. Development

Expand Down
4 changes: 2 additions & 2 deletions docs/book/getting-started/zenml-pro/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ description: Learn about the ZenML Pro features and deployment scenarios.
The [Pro version of ZenML](https://zenml.io/pro) comes with a number of features
that expand the functionality of the Open Source product. ZenML Pro adds a managed control plane with benefits like:

- **A managed production-grade ZenML deployment**: With ZenML Pro you can deploy multiple ZenML servers called [tenants](./tenants).
- **A managed production-grade ZenML deployment**: With ZenML Pro you can deploy multiple ZenML servers called [tenants](./tenants.md).
- **User management with teams**: Create [organizations](./organization.md) and [teams](./teams.md) to easily manage users at scale.
- **Role-based access control and permissions**: Implement fine-grained access control using customizable [roles](./roles.md) to ensure secure and efficient resource management.
- **Enhanced model and artifact control plane**: Leverage the [Model Control Plane](../../user-guide/starter-guide/track-ml-models.md) and [Artifact Control Plane](../../user-guide/starter-guide/manage-artifacts.md) for improved tracking and management of your ML assets.
Expand Down Expand Up @@ -38,4 +38,4 @@ to learn more.
<table data-card-size="large" data-view="cards"><thead><tr><th></th><th></th><th data-hidden></th><th data-hidden data-type="content-ref"></th><th data-hidden data-card-target data-type="content-ref"></th></tr></thead><tbody><tr><td><mark style="color:purple;"><strong>Tenants</strong></mark></td><td>Tenants in ZenML Pro</td><td></td><td></td><td><a href="./tenants.md">tenants.md</a></td></tr><tr><td><mark style="color:purple;"><strong>Organizations</strong></mark></td><td>Organizations in ZenML Pro</td><td></td><td></td><td><a href="./organization.md">organization.md</a></td></tr><tr><td><mark style="color:purple;"><strong>Teams</strong></mark></td><td>Teams in ZenML Pro</td><td></td><td></td><td><a href="./teams.md">teams.md</a></td></tr><tr><td><mark style="color:purple;"><strong>Roles</strong></mark></td><td>Roles in ZenML Pro</td><td></td><td></td><td><a href="./roles.md">roles.md</a></td></tr></tbody></table>

<!-- For scarf -->
<figure><img alt="ZenML Scarf" referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=f0b4f458-0a54-4fcd-aa95-d5ee424815bc" /></figure>
<figure><img alt="ZenML Scarf" referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=f0b4f458-0a54-4fcd-aa95-d5ee424815bc" /></figure>
6 changes: 3 additions & 3 deletions docs/book/getting-started/zenml-pro/pro-api.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@ The ZenML Pro API is a RESTful API that follows OpenAPI 3.1.0 specifications. It
To use the ZenML Pro API, you need to authenticate your requests. If you are logged in to your ZenML Pro account,
you can use the same browser window to authenticate requests to your ZenML Pro API, directly in the OpenAPI docs.

For example, for the SaaS variant, you can access the docs here: https://cloudapi.zenml.io. You can make requests
by being logged into ZenML Pro at https://cloud.zenml.io.
For example, for the SaaS variant, you can access the docs here: [https://cloudapi.zenml.io](https://cloudapi.zenml.io). You can make requests
by being logged into ZenML Pro at [https://cloud.zenml.io](https://cloud.zenml.io).

Programmatic access is not possible at the moment.

Expand Down Expand Up @@ -67,7 +67,7 @@ The API uses standard HTTP status codes to indicate the success or failure of re

Be aware that the ZenML Pro API may have rate limiting in place to ensure fair usage. If you exceed the rate limit, you may receive a 429 (Too Many Requests) status code. Implement appropriate backoff and retry logic in your applications to handle this scenario.

Remember to refer to the complete API documentation available at `https://cloudapi.zenml.io` for detailed information about all available endpoints, request/response schemas, and additional features.
Remember to refer to the complete API documentation available at [https://cloudapi.zenml.io](https://cloudapi.zenml.io) for detailed information about all available endpoints, request/response schemas, and additional features.
<!-- For scarf -->
<figure><img alt="ZenML Scarf" referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=f0b4f458-0a54-4fcd-aa95-d5ee424815bc" /></figure>

Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
---
icon: flask
description: >-
Building pipelines is as simple as adding the `@step` and `@pipeline`
Building pipelines is as simple as adding the @step and @pipeline
decorators to your code.
---

Expand Down Expand Up @@ -49,6 +49,6 @@ locally or remotely. See our documentation on this [here](../../../getting-start

Check below for more advanced ways to build and interact with your pipeline.

<table data-view="cards"><thead><tr><th></th><th></th><th></th><th data-hidden data-card-target data-type="content-ref"></th></tr></thead><tbody><tr><td>Configure pipeline/step parameters</td><td></td><td></td><td><a href="use-pipeline-step-parameters.md">use-pipeline-step-parameters.md</a></td></tr><tr><td>Name and annotate step outputs</td><td></td><td></td><td><a href="step-output-typing-and-annotation.md">step-output-typing-and-annotation.md</a></td></tr><tr><td>Control caching behavior</td><td></td><td></td><td><a href="control-caching-behavior.md">control-caching-behavior.md</a></td></tr><tr><td>Run pipeline from a pipeline</td><td></td><td></td><td><a href="trigger-a-pipeline-from-another.md">trigger-a-pipeline-from-another.md</a></td></tr><tr><td>Control the execution order of steps</td><td></td><td></td><td><a href="control-execution-order-of-steps.md">control-execution-order-of-steps.md</a></td></tr><tr><td>Customize the step invocation ids</td><td></td><td></td><td><a href="using-a-custom-step-invocation-id.md">using-a-custom-step-invocation-id.md</a></td></tr><tr><td>Name your pipeline runs</td><td></td><td></td><td><a href="name-your-pipeline-and-runs.md">name-your-pipeline-and-runs.md</a></td></tr><tr><td>Use failure/success hooks</td><td></td><td></td><td><a href="use-failure-success-hooks.md">use-failure-success-hooks.md</a></td></tr><tr><td>Hyperparameter tuning</td><td></td><td></td><td><a href="hyper-parameter-tuning.md">hyper-parameter-tuning.md</a></td></tr><tr><td>Attach metadata to a step</td><td></td><td></td><td><a href="../track-metrics-metadata/attach-metadata-to-a-step.md">attach-metadata-to-a-step.md</a></td></tr><tr><td>Fetch metadata within steps</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/fetch-metadata-within-steps.md">fetch-metadata-within-steps.md</a></td></tr><tr><td>Fetch metadata during pipeline composition</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/fetch-metadata-within-pipeline.md">fetch-metadata-within-pipeline.md</a></td></tr><tr><td>Enable or disable logs storing</td><td></td><td></td><td><a href="../../advanced-topics/control-logging/enable-or-disable-logs-storing.md">enable-or-disable-logs-storing.md</a></td></tr><tr><td>Special Metadata Types</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/logging-metadata.md">logging-metadata.md</a></td></tr><tr><td>Access secrets in a step</td><td></td><td></td><td><a href="access-secrets-in-a-step.md">access-secrets-in-a-step.md</a></td></tr></tbody></table>
<table data-view="cards"><thead><tr><th></th><th></th><th></th><th data-hidden data-card-target data-type="content-ref"></th></tr></thead><tbody><tr><td>Configure pipeline/step parameters</td><td></td><td></td><td><a href="use-pipeline-step-parameters.md">use-pipeline-step-parameters.md</a></td></tr><tr><td>Name and annotate step outputs</td><td></td><td></td><td><a href="step-output-typing-and-annotation.md">step-output-typing-and-annotation.md</a></td></tr><tr><td>Control caching behavior</td><td></td><td></td><td><a href="control-caching-behavior.md">control-caching-behavior.md</a></td></tr><tr><td>Run pipeline from a pipeline</td><td></td><td></td><td><a href="../trigger-pipelines/README.md">README.md</a></td></tr><tr><td>Control the execution order of steps</td><td></td><td></td><td><a href="control-execution-order-of-steps.md">control-execution-order-of-steps.md</a></td></tr><tr><td>Customize the step invocation ids</td><td></td><td></td><td><a href="using-a-custom-step-invocation-id.md">using-a-custom-step-invocation-id.md</a></td></tr><tr><td>Name your pipeline runs</td><td></td><td></td><td><a href="name-your-pipeline-runs.md">name-your-pipeline-runs.md</a></td></tr><tr><td>Use failure/success hooks</td><td></td><td></td><td><a href="use-failure-success-hooks.md">use-failure-success-hooks.md</a></td></tr><tr><td>Hyperparameter tuning</td><td></td><td></td><td><a href="hyper-parameter-tuning.md">hyper-parameter-tuning.md</a></td></tr><tr><td>Attach metadata to a step</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/attach-metadata-to-a-step.md">attach-metadata-to-a-step.md</a></td></tr><tr><td>Fetch metadata within steps</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/fetch-metadata-within-steps.md">fetch-metadata-within-steps.md</a></td></tr><tr><td>Fetch metadata during pipeline composition</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/fetch-metadata-within-pipeline.md">fetch-metadata-within-pipeline.md</a></td></tr><tr><td>Enable or disable logs storing</td><td></td><td></td><td><a href="../../control-logging/enable-or-disable-logs-storing.md">enable-or-disable-logs-storing.md</a></td></tr><tr><td>Special Metadata Types</td><td></td><td></td><td><a href="../../model-management-metrics/track-metrics-metadata/logging-metadata.md">logging-metadata.md</a></td></tr><tr><td>Access secrets in a step</td><td></td><td></td><td><a href="access-secrets-in-a-step.md">access-secrets-in-a-step.md</a></td></tr></tbody></table>

<figure><img src="https://static.scarf.sh/a.png?x-pxid=f0b4f458-0a54-4fcd-aa95-d5ee424815bc" alt="ZenML Scarf"><figcaption></figcaption></figure>
Loading