Skip to content

Commit

Permalink
added stable-diffusion pipeline (#266)
Browse files Browse the repository at this point in the history
* added stable-diffusion pipeline

* readme file added
  • Loading branch information
meet-rocking authored Dec 21, 2024
1 parent 06908de commit 0bd5335
Show file tree
Hide file tree
Showing 14 changed files with 680 additions and 0 deletions.
23 changes: 23 additions & 0 deletions frontend/core/pipelines/stable-diffusion-2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Stable Diffusion Image Generation Pipeline

This repository contains a Python function `compute` to generate images based on textual descriptions using the Stable Diffusion model. The function utilizes the `diffusers` library and GPU acceleration for efficient image generation.

## Features

- Generate high-quality images from textual prompts.
- Supports inference using the Euler Discrete Scheduler for diffusion.
- Utilizes GPU acceleration with `float16` for enhanced performance.

---

## Usage
The compute function accepts a textual description (prompt) and the number of inference steps to generate an image. The generated image is saved as result.png in the current working directory.

## Function Parameters
- prompt (str): Text description of the desired image.
- inference_steps (int): Number of diffusion steps for the generation process.
- Return Value:
The function returns a dictionary containing the path to the generated image:

## Model used
- https://huggingface.co/stabilityai/stable-diffusion-2
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
FROM python:3.9

WORKDIR /app

RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
RUN pip install diffusers transformers accelerate scipy safetensors

COPY computations.py .
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
{
"index": 0,
"history": [
{
"timestamp": 1731600898832,
"prompt": "Code Template",
"response": "def compute(in1, in2):\r\n \"\"\"A textual description of the compute function.\r\n\r\n Inputs:\r\n in1 (all): Textual description of in1\r\n in2 (all): Textual description of in2\r\n\r\n Outputs:\r\n out1 (all): Textual description of out1\r\n out2 (all): Textual description of out2\r\n\r\n Requirements:\r\n \"\"\"\r\n # some code\r\n out1 = 2 * in1\r\n out2 = \"This is the in2 string:\" + in2\r\n\r\n return {\"out1\": out1, \"out2\": out2}\r\n\r\n\r\ndef test():\r\n \"\"\"Test the compute function.\"\"\"\r\n\r\n print(\"Running test\")\r\n"
},
{
"timestamp": 1731601223108,
"prompt": "Manual Edit of computations.py",
"response": "def compute(prompt, inference_steps):\n \"\"\"\n prompt: text description of image\n inference_steps: difussion steps\n\n output: generated image path\n \"\"\"\n from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler\n\n model_id = \"stabilityai/stable-diffusion-2\"\n \n # Use the Euler scheduler here instead\n scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)\n pipe = pipe.to(\"cuda\")\n \n image = pipe(prompt, num_inference_steps=inference_steps).images[0]\n \n image.save(\"result.png\")\n\n return {\"generated_image_path\": \"result.png\"}\n\n\ndef test():\n \"\"\"Test the compute function.\"\"\"\n\n print(\"Running test\")\n"
},
{
"timestamp": 1731601351634,
"prompt": "Manual Edit of computations.py",
"response": "def compute(prompt, inference_steps):\n \"\"\"\n prompt: text description of image\n inference_steps: difussion steps\n\n output: generated image path\n\n use GPU to run this pipeline, we are using float16 dtype\n \"\"\"\n from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler\n\n model_id = \"stabilityai/stable-diffusion-2\"\n \n # Use the Euler scheduler here instead\n scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)\n pipe = pipe.to(\"cuda\")\n \n image = pipe(prompt, num_inference_steps=inference_steps).images[0]\n \n image.save(\"result.png\")\n\n return {\"generated_image_path\": \"result.png\"}\n\n\ndef test():\n \"\"\"Test the compute function.\"\"\"\n\n print(\"Running test\")\n"
},
{
"timestamp": 1731603317095,
"prompt": "Manual Edit of computations.py",
"response": "def compute(prompt, inference_steps):\n \"\"\"\n prompt: text description of image\n inference_steps: difussion steps\n\n output: generated image path\n\n use GPU to run this pipeline, we are using float16 dtype\n \"\"\"\n from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler\n import torch \n model_id = \"stabilityai/stable-diffusion-2\"\n \n # Use the Euler scheduler here instead\n scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)\n pipe = pipe.to(\"cuda\")\n \n image = pipe(prompt, num_inference_steps=inference_steps).images[0]\n \n image.save(\"result.png\")\n\n return {\"generated_image_path\": \"result.png\"}\n\n\ndef test():\n \"\"\"Test the compute function.\"\"\"\n\n print(\"Running test\")\n"
}
]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
def compute(prompt, inference_steps):
"""
Pipeline to generate the images based on textual description. takes text and inference step as an inputs and return the genreated image.
prompt: text description of image
inference_steps: difussion steps
output: generated image path
use GPU to run this pipeline, we are using float16 dtype
"""
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch
model_id = "stabilityai/stable-diffusion-2"

# Use the Euler scheduler here instead
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

image = pipe(prompt, num_inference_steps=inference_steps).images[0]

image.save("result.png")

return {"generated_image_path": "result.png"}


def test():
"""Test the compute function."""

print("Running test")
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
{
"information": {
"id": "stable-diffusion-2",
"name": "Stable Diffusion 2",
"description": "Pipeline to generate the images based on textual description. takes text and inference step as an inputs and return the genreated image.\nprompt: text description of image\ninference_steps: difussion steps\n\noutput: generated image path\n\nuse GPU to run this pipeline, we are using float16 dtype",
"system_versions": [
"0.1"
],
"block_version": "block version number",
"block_source": "core/blocks/stable-diffusion-2",
"block_type": "compute"
},
"inputs": {
"prompt": {
"type": "Any",
"connections": [
{
"block": "parameter-hhz20qr4vytg",
"variable": "parameter"
}
]
},
"inference_steps": {
"type": "Any",
"connections": [
{
"block": "parameter-cuha2229jdsa",
"variable": "parameter"
}
]
}
},
"outputs": {
"generated_image_path": {
"type": "Any",
"connections": [
{
"block": "view-images-gwly233ys03y",
"variable": "image_paths_view"
}
]
}
},
"action": {
"container": {
"image": "stable-diffusion-2",
"version": "stable-diffusion-2-1k08gnfkag96",
"command_line": [
"python",
"-u",
"entrypoint.py"
]
},
"resources": {
"cpu": {
"request": "",
"limit": ""
},
"memory": {
"request": "",
"limit": ""
},
"gpu": {
"count": 1
}
}
},
"views": {
"node": {
"active": "True or False",
"title_bar": {
"background_color": "#6b2be0"
},
"preview": {},
"html": "",
"pos_x": "786",
"pos_y": "188",
"pos_z": "999",
"behavior": "modal",
"order": {
"input": [
"prompt",
"inference_steps"
],
"output": [
"generated_image_path"
]
}
}
},
"events": {}
}
Loading

0 comments on commit 0bd5335

Please sign in to comment.