Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 1 addition & 4 deletions datasets/cifar.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,7 @@ class CIFAR10Instance(datasets.CIFAR10):
"""CIFAR10Instance Dataset.
"""
def __getitem__(self, index):
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index]
img, target = self.data[index], self.targets[index]

# doing this so that it is consistent with all other datasets
# to return a PIL Image
Expand Down
2 changes: 1 addition & 1 deletion main.py
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@ def train(train_loader, model, lemniscate, criterion, optimizer, epoch):
# measure data loading time
data_time.update(time.time() - end)

index = index.cuda(async=True)
index = index.cuda(non_blocking=True)

# compute output
feature = model(input)
Expand Down
13 changes: 6 additions & 7 deletions test.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def NN(epoch, net, lemniscate, trainloader, testloader, recompute_memory=0):
trainloader.dataset.transform = testloader.dataset.transform
temploader = torch.utils.data.DataLoader(trainloader.dataset, batch_size=100, shuffle=False, num_workers=1)
for batch_idx, (inputs, targets, indexes) in enumerate(temploader):
targets = targets.cuda(async=True)
targets = targets.cuda(non_blocking=True)
batchSize = inputs.size(0)
features = net(inputs)
trainFeatures[:, batch_idx*batchSize:batch_idx*batchSize+batchSize] = features.data.t()
Expand All @@ -35,7 +35,7 @@ def NN(epoch, net, lemniscate, trainloader, testloader, recompute_memory=0):
end = time.time()
with torch.no_grad():
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
targets = targets.cuda(async=True)
targets = targets.cuda(non_blocking=True)
batchSize = inputs.size(0)
features = net(inputs)
net_time.update(time.time() - end)
Expand Down Expand Up @@ -75,19 +75,19 @@ def kNN(epoch, net, lemniscate, trainloader, testloader, K, sigma, recompute_mem
if hasattr(trainloader.dataset, 'imgs'):
trainLabels = torch.LongTensor([y for (p, y) in trainloader.dataset.imgs]).cuda()
else:
trainLabels = torch.LongTensor(trainloader.dataset.train_labels).cuda()
trainLabels = torch.LongTensor(trainloader.dataset.targets).cuda()
C = trainLabels.max() + 1

if recompute_memory:
transform_bak = trainloader.dataset.transform
trainloader.dataset.transform = testloader.dataset.transform
temploader = torch.utils.data.DataLoader(trainloader.dataset, batch_size=100, shuffle=False, num_workers=1)
for batch_idx, (inputs, targets, indexes) in enumerate(temploader):
targets = targets.cuda(async=True)
targets = targets.cuda(non_blocking=True)
batchSize = inputs.size(0)
features = net(inputs)
trainFeatures[:, batch_idx*batchSize:batch_idx*batchSize+batchSize] = features.data.t()
trainLabels = torch.LongTensor(temploader.dataset.train_labels).cuda()
trainLabels = torch.LongTensor(temploader.dataset.targets).cuda()
trainloader.dataset.transform = transform_bak

top1 = 0.
Expand All @@ -97,7 +97,7 @@ def kNN(epoch, net, lemniscate, trainloader, testloader, K, sigma, recompute_mem
retrieval_one_hot = torch.zeros(K, C).cuda()
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
end = time.time()
targets = targets.cuda(async=True)
targets = targets.cuda(non_blocking=True)
batchSize = inputs.size(0)
features = net(inputs)
net_time.update(time.time() - end)
Expand Down Expand Up @@ -133,4 +133,3 @@ def kNN(epoch, net, lemniscate, trainloader, testloader, K, sigma, recompute_mem
print(top1*100./total)

return top1/total