Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add pytorch_Pix2Pix_cGAN.py: implementation of Pix2Pix with conditional GAN (cGAN) #14

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
263 changes: 263 additions & 0 deletions pytorch_Pix2Pix_cGAN.py
Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please ignore this file in this commit and only care about requirements.txt. The correct pytorch_Pix2Pix_cGAN is in the later commit.

Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@
import os, time
import matplotlib.pyplot as plt
import itertools
import pickle
import imageio
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

# G(z)
class generator(nn.Module):
# initializers
def __init__(self, d=128):
super(generator, self).__init__()
self.deconv1 = nn.ConvTranspose2d(100, d*8, 4, 1, 0)
self.deconv1_bn = nn.BatchNorm2d(d*8)
self.deconv2 = nn.ConvTranspose2d(d*8, d*4, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d*4)
self.deconv3 = nn.ConvTranspose2d(d*4, d*2, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d*2)
self.deconv4 = nn.ConvTranspose2d(d*2, d, 4, 2, 1)
self.deconv4_bn = nn.BatchNorm2d(d)
self.deconv5 = nn.ConvTranspose2d(d, 1, 4, 2, 1)

# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)

# forward method
def forward(self, input):
# x = F.relu(self.deconv1(input))
x = F.relu(self.deconv1_bn(self.deconv1(input)))
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = F.relu(self.deconv4_bn(self.deconv4(x)))
x = F.tanh(self.deconv5(x))

return x

class discriminator(nn.Module):
# initializers
def __init__(self, d=128):
super(discriminator, self).__init__()
self.conv1 = nn.Conv2d(1, d, 4, 2, 1)
self.conv2 = nn.Conv2d(d, d*2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d*2)
self.conv3 = nn.Conv2d(d*2, d*4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d*4)
self.conv4 = nn.Conv2d(d*4, d*8, 4, 2, 1)
self.conv4_bn = nn.BatchNorm2d(d*8)
self.conv5 = nn.Conv2d(d*8, 1, 4, 1, 0)

# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)

# forward method
def forward(self, input):
x = F.leaky_relu(self.conv1(input), 0.2)
x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = F.leaky_relu(self.conv4_bn(self.conv4(x)), 0.2)
x = F.sigmoid(self.conv5(x))

return x

def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()

fixed_z_ = torch.randn((5 * 5, 100)).view(-1, 100, 1, 1) # fixed noise
fixed_z_ = Variable(fixed_z_.cuda(), volatile=True)
def show_result(num_epoch, show = False, save = False, path = 'result.png', isFix=False):
z_ = torch.randn((5*5, 100)).view(-1, 100, 1, 1)
z_ = Variable(z_.cuda(), volatile=True)

G.eval()
if isFix:
test_images = G(fixed_z_)
else:
test_images = G(z_)
G.train()

size_figure_grid = 5
fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
for i, j in itertools.product(range(size_figure_grid), range(size_figure_grid)):
ax[i, j].get_xaxis().set_visible(False)
ax[i, j].get_yaxis().set_visible(False)

for k in range(5*5):
i = k // 5
j = k % 5
ax[i, j].cla()
ax[i, j].imshow(test_images[k, 0].cpu().data.numpy(), cmap='gray')

label = 'Epoch {0}'.format(num_epoch)
fig.text(0.5, 0.04, label, ha='center')
plt.savefig(path)

if show:
plt.show()
else:
plt.close()

def show_train_hist(hist, show = False, save = False, path = 'Train_hist.png'):
x = range(len(hist['D_losses']))

y1 = hist['D_losses']
y2 = hist['G_losses']

plt.plot(x, y1, label='D_loss')
plt.plot(x, y2, label='G_loss')

plt.xlabel('Iter')
plt.ylabel('Loss')

plt.legend(loc=4)
plt.grid(True)
plt.tight_layout()

if save:
plt.savefig(path)

if show:
plt.show()
else:
plt.close()

# training parameters
batch_size = 128
lr = 0.0002
train_epoch = 20

# data_loader
img_size = 64
transform = transforms.Compose([
transforms.Scale(img_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)

# network
G = generator(128)
D = discriminator(128)
G.weight_init(mean=0.0, std=0.02)
D.weight_init(mean=0.0, std=0.02)
G.cuda()
D.cuda()

# Binary Cross Entropy loss
BCE_loss = nn.BCELoss()

# Adam optimizer
G_optimizer = optim.Adam(G.parameters(), lr=lr, betas=(0.5, 0.999))
D_optimizer = optim.Adam(D.parameters(), lr=lr, betas=(0.5, 0.999))

# results save folder
if not os.path.isdir('MNIST_DCGAN_results'):
os.mkdir('MNIST_DCGAN_results')
if not os.path.isdir('MNIST_DCGAN_results/Random_results'):
os.mkdir('MNIST_DCGAN_results/Random_results')
if not os.path.isdir('MNIST_DCGAN_results/Fixed_results'):
os.mkdir('MNIST_DCGAN_results/Fixed_results')

train_hist = {}
train_hist['D_losses'] = []
train_hist['G_losses'] = []
train_hist['per_epoch_ptimes'] = []
train_hist['total_ptime'] = []
num_iter = 0

print('training start!')
start_time = time.time()
for epoch in range(train_epoch):
D_losses = []
G_losses = []
epoch_start_time = time.time()
for x_, _ in train_loader:
# train discriminator D
D.zero_grad()

mini_batch = x_.size()[0]

y_real_ = torch.ones(mini_batch)
y_fake_ = torch.zeros(mini_batch)

x_, y_real_, y_fake_ = Variable(x_.cuda()), Variable(y_real_.cuda()), Variable(y_fake_.cuda())
D_result = D(x_).squeeze()
D_real_loss = BCE_loss(D_result, y_real_)

z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1)
z_ = Variable(z_.cuda())
G_result = G(z_)

D_result = D(G_result).squeeze()
D_fake_loss = BCE_loss(D_result, y_fake_)
D_fake_score = D_result.data.mean()

D_train_loss = D_real_loss + D_fake_loss

D_train_loss.backward()
D_optimizer.step()

# D_losses.append(D_train_loss.data[0])
D_losses.append(D_train_loss.data[0])

# train generator G
G.zero_grad()

z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1)
z_ = Variable(z_.cuda())

G_result = G(z_)
D_result = D(G_result).squeeze()
G_train_loss = BCE_loss(D_result, y_real_)
G_train_loss.backward()
G_optimizer.step()

G_losses.append(G_train_loss.data[0])

num_iter += 1

epoch_end_time = time.time()
per_epoch_ptime = epoch_end_time - epoch_start_time


print('[%d/%d] - ptime: %.2f, loss_d: %.3f, loss_g: %.3f' % ((epoch + 1), train_epoch, per_epoch_ptime, torch.mean(torch.FloatTensor(D_losses)),
torch.mean(torch.FloatTensor(G_losses))))
p = 'MNIST_DCGAN_results/Random_results/MNIST_DCGAN_' + str(epoch + 1) + '.png'
fixed_p = 'MNIST_DCGAN_results/Fixed_results/MNIST_DCGAN_' + str(epoch + 1) + '.png'
show_result((epoch+1), save=True, path=p, isFix=False)
show_result((epoch+1), save=True, path=fixed_p, isFix=True)
train_hist['D_losses'].append(torch.mean(torch.FloatTensor(D_losses)))
train_hist['G_losses'].append(torch.mean(torch.FloatTensor(G_losses)))
train_hist['per_epoch_ptimes'].append(per_epoch_ptime)

end_time = time.time()
total_ptime = end_time - start_time
train_hist['total_ptime'].append(total_ptime)

print("Avg per epoch ptime: %.2f, total %d epochs ptime: %.2f" % (torch.mean(torch.FloatTensor(train_hist['per_epoch_ptimes'])), train_epoch, total_ptime))
print("Training finish!... save training results")
torch.save(G.state_dict(), "MNIST_DCGAN_results/generator_param.pkl")
torch.save(D.state_dict(), "MNIST_DCGAN_results/discriminator_param.pkl")
with open('MNIST_DCGAN_results/train_hist.pkl', 'wb') as f:
pickle.dump(train_hist, f)

show_train_hist(train_hist, save=True, path='MNIST_DCGAN_results/MNIST_DCGAN_train_hist.png')

images = []
for e in range(train_epoch):
img_name = 'MNIST_DCGAN_results/Fixed_results/MNIST_DCGAN_' + str(e + 1) + '.png'
images.append(imageio.imread(img_name))
imageio.mimsave('MNIST_DCGAN_results/generation_animation.gif', images, fps=5)
5 changes: 5 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
torch==0.1.12+cu80
torchvision==0.1.8+cu80
matplotlib==1.3.1
imageio==2.2.0
scipy==0.19.1